Loading...
Search for: electrochemical-methods
0.004 seconds
Total 42 records

    Softening of bond stretching phonon mode in Ba 1-x K x BiO 3 superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 23, Issue 7 , 2010 , Pages 1385-1389 ; 15571939 (ISSN) Khosroabadi, H ; Kobayashi, J ; Tanaka, K ; Miyasaka, S ; Tajima, S ; Uchiyama, H ; Baron, A. Q. R ; Sharif University of Technology
    2010
    Abstract
    Single crystals of Ba 1-x K x BiO 3 compound for different values of x (0 x 0.6) from insulator to superconducting region have been grown by electrochemical method. The crystals have been characterized by powder X-ray diffraction and Laue X-ray to determine the crystal structure, phases and potassium concentration. The phonon dispersion of the crystals in (100) direction has been investigated by high-resolution inelastic X-ray scattering. The phonon dispersion for low energy region is almost similar for all crystals measured in this study, while the higher energy modes shift to higher energy by increasing the potassium concentration. Anomalous softening of highest energy phonon has been... 

    A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates

    , Article Journal of Electroanalytical Chemistry ; Volume 645, Issue 1 , June , 2010 , Pages 28-34 ; 15726657 (ISSN) Soleimany, L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2010
    Abstract
    Electrodeposition of gold nanowires is carried out in cyanide solution in polycarbonate templates with pore diameter of 80 nm. Electrochemical methods are utilized to characterize the gold electrodeposition and to obtain the nucleation and growth mechanism. The analysis of cyclic voltammograms shows that the electrodeposition of gold nanowires takes place under diffusion control. Current transients reveal that nucleation mechanism is instantaneous with a three-dimensional growth process. The transition-time measurements show that the gold elecrodeposition occurs as one-electron valence involved in the reaction mechanism. Charge transfer coefficient is also found to be 0.67 ± 0.01. The value... 

    The effect of current density on microstructural homogeneity, hardness, fracture toughness and electrochemical behavior of electrodeposited Cu-0.5Co/WC nano-composite coating

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3505-3511 ; 10263098 (ISSN) Khaleghpanah, Sh ; Abachi, P ; Dolati, A ; Sharif University of Technology
    Abstract
    The Cu-0.5Co/WC nano-composite coating was synthesized on CP-copper substrate using Direct Current (DC) electrodeposition method. In this work, it was tried to increase the hardness of surface without considerable degradation of copper's particular physical properties such as electrical conductivity. The effect of current density on microstructural homogeneity, hardness, fracture toughness, and electrochemical behavior of coating was investigated. The copper plates with the purity of 99.99% were used as electrodes. The electrolyte consists of tungsten carbide particles (30 g/l), copper sulfate (200 g/l), sulfuric acid (50 g/l), cobalt sulfate (50 g/l), and Sodium Dodecyl Sulfate (SDS) (0.3... 

    Effect of localized corrosion on the galvanic corrosion of nitinol and dental alloys

    , Article Anti-Corrosion Methods and Materials ; Volume 56, Issue 6 , 2009 , Pages 323-329 ; 00035599 (ISSN) Afshar, A ; Shirazi, M ; Rahman, M ; Fakheri, E ; Aref, M. R
    2009
    Abstract
    Purpose: The purpose of this paper is to evaluate the galvanic corrosion of nitinol orthodontic wires with six dental alloys in artificial saliva and consider the effect of initiated localized corrosion and real surfaces of anode and cathode on galvanic current. Design/methodology/approach: Linear polarization and cyclic polarization curves for each alloy in de-aerated Duffo and Castillo's artificial saliva are obtained. Galvanic corrosion investigation is conducted by polarization curve intersection and mixed potential theory methods. In order to verify the initiation of localized corrosion, scanning electron microscopy is used. Findings: Initiation of localized corrosion on the anode... 

    Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for cardiac troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs

    , Article Sensors and Actuators, B: Chemical ; Volume 320 , 1 October , 2020 Mokhtari, Z ; Khajehsharifi, H ; Hashemnia, S ; Solati, Z ; Azimpanah, R ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this research, a novel, rapid, and non-immune electrochemical method was used to detect cardiac troponin I (cTnI) using a double recognition approach. Amine terminus cTnI aptamers immobilized on COOH-ZnO nanoparticles (COOH-ZnONPs) modified GCE surface were applied to capture cTnI for imprinting recognition. The COOH-ZnONPs were synthesized in a biological manner. Then, the methylene blue (MB) monomers were electro-polymerized around the cTnI-aptamer complexes. Following the removal of cTnI, cavities were constructed and converted to a new aptamer and molecular imprinted polymer (MIP) hybrid receptor (aptamer/MIP/ZnONPs). FT-IR spectra, SEM images, XRD patterns, and electrochemical... 

    Carbonaceous supports decorated with Pt–TiO2 nanoparticles using electrostatic self-assembly method as a highly visible-light active photocatalyst for CO2 photoreduction

    , Article Renewable Energy ; Volume 145 , January , 2020 , Pages 1862-1869 Larimi, A ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Supported Pt–TiO₂ photocatalysts on carbonaceous supports were synthesized by the electrostatic self-assembly method to study CO₂ photoreduction to produce CH₄. Catalytic activities of the prepared photocatalysts were correlated with the particle size and dispersion of the active metal, which in turn depended on the type of carbonaceous support used, varying in the order of multi-walled carbon nanotubes (MWCNT) > Single-walled carbon nanotubes (SWCNT) > reduced graphene oxide > activated carbon. Generally, all catalysts were highly photoresistant with less than 5% loss of activity in terms of CH₄ yield. Pt–TiO₂/multi-walled carbon nanotubes exhibited better catalytic activity compared with... 

    Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers

    , Article Solar Energy ; Volume 208 , 2020 , Pages 697-707 Kazemzadeh Otoufi, M ; Ranjbar, M ; Kermanpur, A ; Taghavinia, N ; Minbashi, M ; Forouzandeh, M ; Ebadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In planar perovskite solar cells (PSCs), engineering the extraction and recombination of electron–hole pairs by modification of the electron transport layer (ETL)/perovskite interface is very vital for obtaining high performance. The main idea here is to improve properties of the TiO2/perovskite interface by inserting an ultra-thin layer (UTL) of WO3 or SnO2 with the thickness of less than 10 nm by RF magnetron sputtering method. The structural and electrical characteristics of the samples were tested by XRD, AFM, FE-SEM, Mott-Schottky analysis, UV–Vis spectroscopy, J-V characterization and electrochemical impedance spectroscopy (EIS). It was found that the bilayer structured ETLs exhibit... 

    Metal-organic framework derived NiSe2/CeO2nanocomposite as a high-performance electrocatalyst for oxygen evolution reaction (OER)

    , Article Sustainable Energy and Fuels ; Volume 5, Issue 11 , 2021 , Pages 2994-3000 ; 23984902 (ISSN) Taherinia, D ; Moravvej, S. H ; Moazzeni, M ; Akbarzadeh, E ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    The development of efficient and cost-effective catalysts for the oxygen evolution reaction is highly desirable for applications that are based on sustainable and clean technologies. In this study, we report the synthesis of a series of cerium(iv) oxide and nickel diselenide nanocomposites (NiSe2/CeO2) as efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium. The ratios of the two substances were optimized to reach the highest catalytic activity. The structure and morphology of synthesized materials were investigated by XRD, FE-SEM, EDX, BET, XPS, and TEM techniques. It was observed that the nanocomposite with a 10 : 1 mass ratio of NiSe2to CeO2showed the best... 

    Nanosized NiFeSe2/NiCo2O4 hierarchical arrays on Ni foam as an advanced electrocatalyst for hydrogen generation

    , Article Sustainable Energy and Fuels ; Volume 7, Issue 1 , 2022 , Pages 112-121 ; 23984902 (ISSN) Tasviri, M ; Shekarabi, S ; Taherinia, D ; Zare Pour, M. A ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    The rational design of composite catalysts is critically essential for electrochemical water splitting. Here, we report on a novel hierarchical composite that comprises NiFeSe2 nanoparticles and NiCo2O4 nanoflakes supported on nickel foam (NF) as an efficient electrocatalyst for the hydrogen evolution reaction (HER). The conjunction of the NiFeSe2 nanoparticles and NiCo2O4 nanoflakes introduces a new synergistic effect for the HER, resulting in an improved NiCo2O4 catalyst. The as-prepared NiFeSe2/NiCo2O4/NF electrode exhibited an enhanced HER activity, with a low overpotential of 83 mV at a current density of 10 mA cm−2, a low Tafel slope of 45 mV dec−1, and an excellent long-term... 

    Electrochemical properties of Ni3S2@MoS2-rGO ternary nanocomposite as a promising cathode for Ni–Zn batteries and catalyst towards hydrogen evolution reaction

    , Article Renewable Energy ; Volume 194 , 2022 , Pages 152-162 ; 09601481 (ISSN) Salarizadeh, P ; Rastgoo Deylami, M ; Askari, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The development of active and stable materials has great importance for the commercialization of nickel-zinc (Ni–Zn) batteries and hydrogen production. Transition metal sulfides have good theoretical properties for these applications. In this research, we present the synthesis and characterization of Ni3S2@MoS2 nanocatalyst and its hybrid with reduced graphene oxide (Ni3S2@MoS2-rGO). The capability of these materials is investigated as cathode material for Ni–Zn batteries and hydrogen evolution in alkaline media. In the case of Ni–Zn batteries, the assembled Ni3S2@MoS2-rGO//Zn battery shows a discharge capacity of 249.3 mAh g−1 with coulombic efficiency of 97.2%, showing a higher... 

    Investigation of electrochemical parameters on cost-effective Zn/Ni-based electrocatalysts for electrochemical co2reduction reaction to syngas(H2+CO)

    , Article Journal of the Electrochemical Society ; Volume 169, Issue 4 , 2022 ; 00134651 (ISSN) Shahrestani, S ; Beheshti, M ; Kakooei, S ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Electrochemical CO2 reduction reaction (CO2RR) has been studied in 0.1 M of KCl (pH of 6.96), NaHCO3 (pH of 8.3) and K2CO3 (pH of 11.36) cathodic solutions with various counter electrodes including graphite rod, SS316 rod and Pt mesh at different potential ranges on the Znx-Ni1-x bimetallic electrocatalysts. Among the Znx-Ni1-x electrocatalysts, the Zn-Ni electrode with a composition of 65 wt% Zn and 35 wt% Ni and cluster-like microstructure has the best performance for CO2RR by according to minimum coke formation and optimum CO and H2 faradaic efficiencies (CO FE% = 55% and H2 FE% = 45%). The cyclic voltammetry (CV) measurements and gas chromatography (GC) analysis for the CO2RR showed that... 

    Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1643-1650 ; 14328488 (ISSN) Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2012
    Abstract
    A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1-100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the... 

    A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation

    , Article Solar Energy ; Volume 85, Issue 9 , 2011 , Pages 1972-1978 ; 0038092X (ISSN) Naseri, N ; Yousefi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    TiO2/ZnO and ZnO/TiO2 nanolayer thin films were synthesized using sol-gel method. Optical analysis revealed high transmittance of the films in the visible range with almost the same bandgap energy for the both systems. XPS technique shows stoichiometric formation of TiO2 and ZnO on the surface of TiO2/ZnO and ZnO/TiO2 layers, respectively. According to AFM observations and its data analysis, the TiO2/ZnO films exhibited a higher surface roughness and more effective interfaces with electrolyte during redox reactions. Based on photoelectrochemical measurements, TiO2/ZnO nanolayer photoanode possesses a lower charge transfer resistance and higher transient time for charge carriers (e- and h+)... 

    Effective degradation of Reactive Red 195 via heterogeneous electro-Fenton treatment: theoretical study and optimization

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 10 , 2019 , Pages 6329-6346 ; 17351472 (ISSN) Nazari, P ; Rahman Setayesh, S ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Abstract: The magnetite (Fe3O4) nanoparticles were synthesized and supported on the reduced graphene oxide. The characterization of the catalyst was performed by FT-IR, VSM, SEM, XRD, and BET techniques. The obtained results indicated that the in situ synthesis of Fe3O4 using coprecipitation method caused the homogenous formation of magnetite nanoparticles on the surface of reduced graphene oxide (average particle size ~ 71.032 nm) with high stability and catalytic activity toward electro-Fenton removal of Reactive Red 195. The effect of various factors (current intensity, initial pollutant concentration, catalyst weight, and pH) was evaluated by response surface methodology using central... 

    Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution

    , Article Journal of Cleaner Production ; Volume 210 , 2019 , Pages 660-672 ; 09596526 (ISSN) Alibakhshi, E ; Ramezanzadeh, M ; Haddadi, S. A ; Bahlakeh, G ; Ramezanzadeh, B ; Mahdavian, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The Persian Liquorice was introduced as a sustainable corrosion inhibitor with excellent inhibition action for mild steel in sodium chloride solution. Persian Liquorice is a root of Glycyrrhiza glabra including many active compounds like Glycyrrhizin (GL), 18β- Glycyrrhetinic acid (GA), Liquritigenin (LTG), Licochalcone A (LCA), Licochalcone E (LCE), and Glabridin (GLD). The Fourier transform infrared (FT-IR) spectroscopy was utilized to track various active components exist in the Persian Liquorice extract. Electrochemical impedance spectroscopy, potentiodynamic polarization and electrochemical current noise measurements were conducted to investigate the corrosion inhibition role of various... 

    Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 624, Issue 1-2 , 2008 , Pages 73-78 ; 15726657 (ISSN) Mazloum Ardakani, M ; Taleat, Z ; Beitollahi, H ; Salavati Niasari, M ; Mirjalili, B. B. F ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2008
    Abstract
    A modified carbon paste electrode was prepared by incorporating TiO2 nanoparticles with bis[bis(salicylidene-1,4-phenylenediamine)molybdenum(VI)]. A mixture of fine graphite powder with 4 wt% of TiO2 nanoparticles was applied for the preparation of the carbon paste (by dispersing in paraffin) and finally modified with a molybdenum (VI) complex. The electrocatalytic oxidation of guanine (G) was investigated on the surface of the molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode (MCTNMCPE) using cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry (CHA) and chronocoloumetry (CHC). Using the modified electrode, the kinetics of G... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: Application to determinations in pharmaceutical and clinical preparations

    , Article Journal of Electroanalytical Chemistry ; Volume 638, Issue 2 , 2010 , Pages 212-217 ; 15726657 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A new sensitive and selective electrochemical sensor was developed for determination of naltrexone (NAL) in pharmaceutical dosage form and human plasma. Naltrexone is an opioid antagonist which is commonly used for the treatment of narcotic addiction and alcohol dependence. A voltammetric study of naltrexone has been carried out at the surface of glassy carbon electrode (GCE) modified with Nafion-doped carbon nanoparticles (CNPs). The electrochemical oxidation of naltrexone was investigated by cyclic and differential pulse voltammetric techniques. The dependence of peak currents and potentials on pH, concentration and the potential scan rate was investigated. The electrode characterization... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron...