Loading...
Search for: escherichia-coli
0.005 seconds
Total 131 records

    Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 590 , 2014 , pp. 507-513 ; ISSN: 09258388 Zirak, M ; Akhavan, O ; Moradlou, O ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (Eg) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with Eg ∼2.5-2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve... 

    Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner

    , Article Carbon ; Volume 50, Issue 5 , 2012 , Pages 1853-1860 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2012
    Abstract
    Interactions of chemically exfoliated graphene oxide (GO) nanosheets and Escherichia coli bacteria living in mixed-acid fermentation with an anaerobic condition were investigated for different exposure times. X-ray photoelectron spectroscopy showed that as the exposure time increased (from 0 to 48 h), the oxygen-containing functional groups of the GO decreased by ∼60%, indicating a relative chemical reduction of the sheets by interaction with the bacteria. Raman spectroscopy and current-voltage measurement confirmed the reduction of the GO exposed to the bacteria. The reduction was believed to be due to the metabolic activity of the surviving bacteria through their glycolysis process. It was... 

    Production of l-asparaginase from Escherichia coli ATCC 11303: Optimization by response surface methodology

    , Article Food and Bioproducts Processing ; Volume 89, Issue 4 , Oct , 2011 , Pages 315-321 ; 09603085 (ISSN) Kenari, S. L. D ; Alemzadeh, I ; Maghsodi, V ; Sharif University of Technology
    2011
    Abstract
    This paper discusses the studies carried out for the optimal production of enzyme l-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) from Escherichia coli (ATCC 11303). It was found that inoculum age of 18 h and inoculum size of 10% were the most favorable operating conditions for enzyme production. Lactose, yeast extract and KH 2PO 4 were found to be the best carbon, nitrogen and ion sources, respectively. Statistical method was used to survey how various medium conditions affect the enzyme production. By response surface methodology, the values of lactose, tryptone, yeast extract, KH 2PO 4 and l-asparagine concentration were investigated to obtain the maximum enzyme activity. The... 

    Facile template-free synthesis of the CuO microflowers with enhanced photocatalytic properties

    , Article Materials Research Innovations ; 2016 , Pages 1-5 ; 14328917 (ISSN) Ahmadi, M ; Padervand, M ; Vosoughi, M ; Roosta Azad, R ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    CuO flower-like microcrystals, prepared by a facile template-free thermal method, showed incredible photocatalytic activity towards degradation of Acid Blue 92 (AB92), an organic wastewater, Escherichia coli and Staphylococcus aureus pathogenic bacteria under visible light. The products were well characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier transform infrared (FTIR), photoluminescence spectroscopy (PL) and diffuse reflectance spectra (DRS) analysis methods. The XRD pattern of the products well confirmed the formation of copper oxide crystalline phase without any other impurities. The results of the photocatalytic... 

    High antimicrobial activity and low human cell cytotoxicity of core-shell magnetic nanoparticles functionalized with an Antimicrobial Peptide

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 18 , 2016 , Pages 11366-11378 ; 19448244 (ISSN) Maleki, H ; Rai, A ; Pinto, S ; Evangelista, M ; Cardoso, R. M. S ; Paulo, C ; Carvalheiro, T ; Paiva, A ; Imani, M ; Simchi, A ; Durães, L ; Portugal, A ; Ferreira, L ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with antimicrobial agents are promising infection-targeted therapeutic platforms when coupled with external magnetic stimuli. These antimicrobial nanoparticles (NPs) may offer advantages in fighting intracellular pathogens as well as biomaterial-associated infections. This requires the development of NPs with high antimicrobial activity without interfering with the biology of mammalian cells. Here, we report the preparation of biocompatible antimicrobial SPION@gold core-shell NPs based on covalent immobilization of the antimicrobial peptide (AMP) cecropin melittin (CM) (the conjugate is named AMP-NP). The minimal inhibitory... 

    Chemical composition and antibacterial activity of dracocephalum kotschyi essential oil obtained by microwave extraction and hydrodistillation

    , Article International Journal of Food Properties ; Volume 20 , 2017 , Pages S306-S315 ; 10942912 (ISSN) Moridi Farimani, M ; Mirzania, F ; Sonboli, A ; Matloubi Moghaddam, F ; Sharif University of Technology
    Abstract
    Dracocephalum kotschyi essential oils obtained by hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and solvent-free microwave extraction (SFME) were investigated by GC-FID (Gas Chromatography-Flame Ionization Detector) and GC-MS (Gas Chromatography-Mass Spectrometry). The percentage of oxygenated compounds was significantly increased from 62.52% in HD to 76.47% in MAHD, and 84.52% in SFME. Conversely, the monoterpene hydrocarbons were decreased from 30.84% in HD to 13.71% in MAHD, and 5.85% in SFME. The main compound in the essential oil obtained by HD is limonene, which accounted for more than 30% of the oil, while the percentage of this compound was reduced to 9.52% in... 

    Facile template-free synthesis of the CuO microflowers with enhanced photocatalytic properties

    , Article Materials Research Innovations ; Volume 21, Issue 7 , 2017 , Pages 434-438 ; 14328917 (ISSN) Ahmadi, M ; Padervand, M ; Vosoughi, M ; Roosta Azad, R ; Sharif University of Technology
    Abstract
    CuO flower-like microcrystals, prepared by a facile template-free thermal method, showed incredible photocatalytic activity towards degradation of Acid Blue 92 (AB92), an organic wastewater, Escherichia coli and Staphylococcus aureus pathogenic bacteria under visible light. The products were well characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier transform infrared (FTIR), photoluminescence spectroscopy (PL) and diffuse reflectance spectra (DRS) analysis methods. The XRD pattern of the products well confirmed the formation of copper oxide crystalline phase without any other impurities. The results of the photocatalytic... 

    Label-free and simple detection of endotoxins using a sensitive LSPR biosensor based on silver nanocolumns

    , Article Analytical Biochemistry ; Volume 548 , 2018 , Pages 96-101 ; 00032697 (ISSN) Zandieh, M ; Hosseini, N ; Vossoughi, M ; Khatami, M ; Abbasian, S ; Moshaii, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    This paper describes the construction of a silver-based LSPR biosensor for endotoxin detection. We used GLAD method to procure reproducible silver nanocolumns. In this work, the silver nanostructures were considerably stabilized by a SAM of MPA, and the limit of detection of biosensor was measured to be 340 pg/ml for endotoxin E. coli. Considering endotoxin B. abortus as the second type of endotoxin contamination in our target samples (HBs-ag produced in Institute Pasteur, Iran), we investigated selectivity of the biosensor in various experiments. We showed that this biosensor can selectively detect both types of endotoxins compared to other biological species. Overall, this study proposes... 

    Microstructural characterization and antibacterial activity of carbon nanotube decorated with Cu nanoparticles synthesized by a novel solvothermal method

    , Article Ceramics International ; Volume 47, Issue 18 , 2021 , Pages 25729-25737 ; 02728842 (ISSN) Cao, Y ; Moniri Javadhesari, S ; Mohammadnejad, S ; khodadustan, E ; Raise, A ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this research, carbon nanotube decorated with Cu nanoparticles (CNT/Cu) was synthesized by a new solvothermal process. Solvothermal treatment of CuSO4 and NaOH was completed in ethanol containing ultrasonically dispersed CNTs at 160 °C for 3 h. In the solvothermal process, Cu nanoparticles were heterogeneously deposited on the surface of COOH-functionalized CNTs through the reduction of the Cu+2 ions. Cu nanoparticles with the size of ≈8 nm on CNTs (and some in the solution) and strong bonding between Cu and CNT were obtained by the used process. Microstructural characterization revealed that the solvothermal method is an appropriate method for producing homogenous CNT/Cu nanostructure.... 

    Antibacterial and antifungal activity of methanolic extracts of Salix alba L. against various disease causing pathogens

    , Article Brazilian journal of biology = Revista brasleira de biologia ; Volume 83 , 2021 , Pages e243332- ; 16784375 (ISSN) Javed, B ; Farooq, F ; Ibrahim, M ; Abbas, H. A. B ; Jawwad, H ; Zehra, S. S ; Ahmad, H. M ; Sarwer, A ; Malik, K ; Nawaz, K ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    The present study was aimed to manifest the antibacterial and antifungal activity of methanolic extracts of Salix alba L. against seven Gram-positive and Gram-negative bacterial pathogens e.g. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) and Neisseria gonorrhoeae and three fungal isolates from the air such as Aspergillus terreus, A. ornatus, and Rhizopus stolonifer. Two different serotypes of S. aureus and E. coli were used. The agar well-diffusion method results showed the dose-dependent response of plant extracts against bacterial and fungal strains while some organisms were found resistant e.g. E. coli (1), S. sonnei,... 

    Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 9 , 2021 ; 22964185 (ISSN) Mansouri, M ; Khayam, N ; Jamshidifar, E ; Pourseif, T ; Kianian, S ; Mirzaie, A ; Akbarzadeh, I ; Ren, Q ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    One of the antibiotics used to treat infections is streptomycin sulfate that inhibits both Gram-negative and -positive bacteria. Nanoparticles are suitable carriers for the direct delivery and release of drug agents to infected locations. Niosomes are one of the new drug delivery systems that have received much attention today due to their excellent biofilm penetration property and controlled release. In this study, niosomes containing streptomycin sulfate were prepared by using the thin layer hydration method and optimized based on the size, polydispersity index (PDI), and encapsulation efficiency (EE%) characteristics. It was found that the Span 60-to-Tween 60 ratio of 1.5 and the... 

    Evaluation of antibacterial behavior of in situ grown CuO-GO nanocomposites

    , Article Materials Today Communications ; Volume 28 , 2021 ; 23524928 (ISSN) Ahmadi, R ; Fattahi Nafchi Fatahi, R ; Sangpour, P ; Bagheri, M ; Rahimi, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The growth of harmful microorganisms is a severe threat to human life. Nowadays, it is necessary to prepare antimicrobials materials with high biocompatibility properties. Hence, the use of nanomaterials and their nanocomposites has been proposed as a suitable way to obtain safe and potent antibacterial materials. Recently, several studies have been conducted on the antibacterial properties of metal oxide and graphene oxide (GO) nanomaterials individually. This study investigated the synergistic effect of GO and copper oxide (CuO) as a nanocomposite. CuO-GO nanocomposite containing 5%, 15%, 25%, 50%, and 75% of GO were synthesized to study antibacterial properties. X-ray diffraction (XRD)... 

    Effects of temperature shifts and oscillations on recombinant protein production expressed in Escherichia coli

    , Article Bioprocess and Biosystems Engineering ; Volume 36, Issue 11 , 2013 , Pages 1571-1577 ; 16157591 (ISSN) Jazini, M ; Herwig, C ; Sharif University of Technology
    2013
    Abstract
    Escherichia coli is widely used host for the intracellular expression of many proteins. However, in some cases also secretion of protein from periplasm was observed. Improvement of both intracellular and extracellular production of recombinant protein in E. coli is an attractive goal in order to reduce production cost and increase process efficiency and economics. Since heat shock proteins in E. coli were reported to be helpful for protein refolding and hindering aggregation, in this work different types of single and periodic heat shocks were tested on lab scale to enhance intracellular and extracellular protein production. A single heat shock prior to induction and different oscillatory... 

    Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers

    , Article Biomedical Optics Express ; Volume 6, Issue 1 , 2015 , Pages 112-117 ; 21567085 (ISSN) Samadi, A ; Zhang, C ; Chen, J ; Reihani, S. N. S ; Chen, Z ; Sharif University of Technology
    OSA - The Optical Society  2015
    Abstract
    We implement an optical tweezers technique to assess the effects of chemical agents on single bacterial cells. As a proof of principle, the viability of a trapped Escherichia coli bacterium is determined by monitoring its flagellar motility in the presence of varying concentrations of ethyl alcohol. We show that the “killing time” of the bacterium can be effectively identified from the correlation statistics of the positional time series recorded from the trap, while direct quantification from the time series or associated power spectra is intractable. Our results, which minimize the lethal effects of bacterial photodamage, are consistent with previous reports of ethanol toxicity that used... 

    Thickness dependent activity of nanostructured TiO2/α- Fe2O3 photocatalyst thin films

    , Article Applied Surface Science ; Volume 257, Issue 5 , 2010 , Pages 1724-1728 ; 01694332 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe 2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O 3 (200 nm)/glass films, and... 

    Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts

    , Article Surface and Coatings Technology ; Volume 205, Issue 1 , September , 2010 , Pages 219-223 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    CuO nanoparticles with average diameter of about 20. nm were accumulated on surface of sol-gel silica thin films heat treated at 300 °C in air. Heat treatment of the CuO nanoparticles at 600 °C in a reducing environment resulted in effective reduction of the nanoparticles and penetration of them into the film. While the thin films heat treated at 300 °C exhibited a strong antibacterial activity against Escherichia coli bacteria, the reducing process decreased their antibacterial activity. However, by definition of normalized antibacterial activity (antibacterial activity/surface concentration of coppers) it was found that Cu nanoparticles were more toxic to the bacteria than the CuO... 

    Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation

    , Article Applied Catalysis A: General ; Volume 369, Issue 1-2 , 2009 , Pages 77-82 ; 0926860X (ISSN) Akhavan, O ; Azimirad, R ; Sharif University of Technology
    2009
    Abstract
    The visible light photocatalytic activity of α-Fe2O3 nanograin chains coated by anatase TiO2 nanolayer, as a photocatalyst thin film for inactivation of Escherichia coli bacteria, was investigated for the solutions containing 106 colony forming units per milliliter of the bacteria, without and with H2O2 (60 μM). Thin films of the α-Fe2O3 nanograins with the grain size of 40-280 nm were grown on glass substrates by post-annealing of the thermal evaporated Fe3O4 thin films at 400 °C in air. The TiO2 layer with thickness of about 20 nm was coated on the nanograins by dipping the Fe2O3 thin films in a prepared TiO2 sol and re-annealing them at 400 °C in air. The antibacterial activity of the... 

    Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation

    , Article Carbon ; Volume 47, Issue 14 , 2009 , Pages 3280-3287 ; 00086223 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2009
    Abstract
    TiO2/multi-wall carbon nanotube (MWNT) heterojunction arrays were synthesized and immobilized on Si(0 0 1) substrate as photocatalysts for inactivation of Escherichia coli bacteria. The vertically aligned MWNT arrays were grown on ∼5 nm Ni thin film deposited on the Si by using plasma enhanced chemical vapor deposition at 650 °C. Then, the MWNTs were coated by TiO2 using dip-coating sol-gel method. Post annealing of the TiO2/MWNTs at 400 °C resulted in crystallization of the TiO2 coating and formation of Ti-C and Ti-O-C carbonaceous bonds at the heterojunction. The visible light-induced photoinactivation of the bacteria increased from MWNTs to TiO2 to TiO2/MWNTs, in which the bacteria could... 

    Toxicity of graphene and graphene oxide nanowalls against bacteria

    , Article ACS Nano ; Volume 4, Issue 10 , October , 2010 , Pages 5731-5736 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an... 

    Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities

    , Article Surface and Coatings Technology ; Volume 204, Issue 21-22 , August , 2010 , Pages 3676-3683 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Antibacterial activity of sol-gel synthesized Ag-TiO2 nanocomposite layer (30nm) deposited on rough anatase (a) TiO2 thin film (~200nm in thickness) was investigated against Escherichia coli bacteria, in dark and also in exposure to UV light. The nanocomposite thin films were transparent with a surface plasmon resonance absorption band at a wavelength of 410nm. The metallic silver nanoparticles with an average diameter of 30nm and fcc crystalline structure were self-accumulated on surface of a mesoporous and aqueous TiO2 layer with a capillary pore structure having a pore radius of 3.0nm. By adding the silver nanoparticles in the TiO2 layer, recombination of the photoexcited electron-hole...