Loading...
Search for: escherichia-coli
0.008 seconds
Total 131 records

    Photocatalytic mechanism of action of apatite-coated Ag=AgBr=TiO 2 on phenol and Escherichia coli and Bacillus subtilis bacteria under various conditions

    , Article Progress in Reaction Kinetics and Mechanism ; Vol. 1 , Vol.36 (1) , 2011 , pp.38-52 Elahifard, M. R. (Mohammad Reza) ; Gholami, M. R. (Mohammad Reza) ; Rahimnejad, S. (Sara) ; Pourbaba, R. (Reza) ; Haghighi, S.(Saeed) ; Sharif University Of Technology
    Abstract
    Multi-component photocatalysts based on apatite-coated Ag/AgBr/TiO(2) were prepared by the deposition method. The effects of various kinds of apatites, with hydroxyl and fluoro substituents, on photocatalytic activity were investigated. The antibacterial processes in the dark, and under visible light, on two types of bacteria indicate that the multi-composites can inhibit the growth of bacteria by two different mechanisms. TEM images and optical microscopic data demonstrate that by attaching the nanosize catalyst to the outer membrane of the cell, the bacteria could not derive nourishment from surrounding media, i.e. this component acts as bacteria-static. The mechanism for deactivation of... 

    Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 612 , 2014 , pp. 380-385 ; ISSN: 09258388 Nourmohammadi, A ; Rahighi, R ; Akhavan, O ; Moshfegh, A ; Sharif University of Technology
    Abstract
    Vertically aligned ZnO nanowires (NWs) hybridized with reduced graphene oxide sheets (rGO) were applied in efficient visible light photoinactivation of bacteria. To incorporate graphene oxide (GO) sheets within the NWs two different methods of drop-casting and electrophoretic deposition (EPD) were utilized. The EPD method yielded effective penetration of the positively charged GO sheets into the NWs to form a spider net-like structure, whereas the drop-casting method resulted in only a surface coverage of the GO sheets on top of the NWs. The electrical connection between the EPD-incorporated sheets and the NWs was checked by monitoring the electron transfer from UV-assisted photoexcited ZnO... 

    Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria

    , Article Journal of Alloys and Compounds ; Vol. 590 , 2014 , pp. 507-513 ; ISSN: 09258388 Zirak, M ; Akhavan, O ; Moradlou, O ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    Vertically aligned ZnO@CdS nanorod heterostructure films with various loadings of CdS nanoparticle shell were synthesized and applied in photoinactivation of Escherichia coli bacteria under visible light irradiation. While neither the bare ZnO nanorods (with band-gap energy (Eg) of ∼3.28 eV) under visible light irradiation nor the nanorod heterostructures in dark exhibited any significant antibacterial activity, the ZnO@CdS nanorod heterostructures (with Eg ∼2.5-2.6 eV) could successfully inactivate the bacteria under visible light irradiation. Furthermore, it was found that an optimum loading of the CdS shell (corresponding to the effective thickness less than ∼15 nm) is required to achieve... 

    Investigation of synergistic effect of nano sized Ag/TiO2 particles on antibacterial, physical and mechanical properties of UV-curable clear coatings by experimental design

    , Article Progress in Organic Coatings ; Vol. 77, issue. 2 , February , 2014 , pp. 502-511 ; ISSN: 03009440 Labbani-Motlagh, A ; Bastani, S ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    The synergistic effect of nano titanium dioxide (10 and 30 nm) and nano silver (10 nm) as antibacterial agents were investigated on UV curable clear coating. Antibacterial and physical-mechanical properties of coating were optimized using experimental design in response surface method. Twenty different samples of nano Ag and nano TiO2 were prepared in this method. Antibacterial properties on Gram-negative bacteria (Escherichia coli) were investigated. The results revealed that using equal amounts of two sizes of nano TiO2 promote the antibacterial activity of nano Ag. So, the coating shows strong activity against E. coli. Physical-mechanical properties such as surface hardness, abrasion... 

    Substrate oscillations boost recombinant protein release from Escherichia coli

    , Article Bioprocess and Biosystems Engineering ; Volume 37, Issue 5 , May , 2014 , Pages 881-890 ; ISSN: 16157591 Jazini, M ; Herwig, C ; Sharif University of Technology
    Abstract
    Intracellular production of recombinant proteins in prokaryotes necessitates subsequent disruption of cells for protein recovery. Since the cell disruption and subsequent purification steps largely contribute to the total production cost, scalable tools for protein release into the extracellular space is of utmost importance. Although there are several ways for enhancing protein release, changing culture conditions is rather a simple and scalable approach compared to, for example, molecular cell design. This contribution aimed at quantitatively studying process technological means to boost protein release of a periplasmatic recombinant protein (alkaline phosphatase) from E. coli.... 

    DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets

    , Article RSC Advances ; Vol. 4, issue. 105 , 2014 , p. 60720-60728 Hashemi, E ; Akhavan, O ; Shamsara, M ; Valimehr, S ; Rahighi, R ; Sharif University of Technology
    Abstract
    Graphene nanoplatelets with lateral dimensions of ∼50-200 nm and thicknesses <2 nm were utilized for the extraction of nucleic acids (NAs) from eukaryotic and prokaryotic cells. The graphene nanoplatelets (both chemically exfoliated graphene oxide nanoplatelets and hydrazine-reduced graphene oxide nanoplatelets) successfully extracted plasmid DNA (pDNA) from Escherichia coli bacteria, comparable to a conventional phenol-chloroform (PC) method. Furthermore, it was found that the yield of graphene nanoplatelets in genomic DNA (gDNA) and RNA extractions from embryonic stem cells (ESCs) was also comparable to the yield of the conventional methods. The effects of the graphene nanoplatelets on... 

    Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC 9027 rhamnolipids by nonpathogenic cell factory pseudomonas putida KT2440

    , Article Molecular Biotechnology ; Vol. 56, issue. 2 , 2014 , p. 175-191 Setoodeh, P ; Jahanmiri, A ; Eslamloueyan, R ; Niazi, A ; Ayatollahi, S. S ; Aram, F ; Mahmoodi, M ; Hortamani, A ; Sharif University of Technology
    Abstract
    Rhamnolipids (RLs) produced by the opportunistic human pathogen Pseudomonas aeruginosa are considered as potential candidates for the next generation of surfactants. Large-scale production of RLs depends on progress in strain engineering, medium design, operating strategies, and purification procedures. In this work, the rhlAB genes extracted from a mono-RLs-producing strain of P. aeruginosa (ATCC 9027) were introduced to an appropriate safety host Pseudomonas putida KT2440. The capability of the recombinant strain was evaluated in various media. As a prerequisite for optimal medium design, a set of 32 experiments was performed in two steps for screening a number of macro-nutritional... 

    Effects of temperature shifts and oscillations on recombinant protein production expressed in Escherichia coli

    , Article Bioprocess and Biosystems Engineering ; Volume 36, Issue 11 , 2013 , Pages 1571-1577 ; 16157591 (ISSN) Jazini, M ; Herwig, C ; Sharif University of Technology
    2013
    Abstract
    Escherichia coli is widely used host for the intracellular expression of many proteins. However, in some cases also secretion of protein from periplasm was observed. Improvement of both intracellular and extracellular production of recombinant protein in E. coli is an attractive goal in order to reduce production cost and increase process efficiency and economics. Since heat shock proteins in E. coli were reported to be helpful for protein refolding and hindering aggregation, in this work different types of single and periodic heat shocks were tested on lab scale to enhance intracellular and extracellular protein production. A single heat shock prior to induction and different oscillatory... 

    Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media

    , Article Photochemical and Photobiological Sciences ; Volume 12, Issue 10 , 2013 , Pages 1787-1794 ; 1474905X (ISSN) Azimzadehirani, M ; Elahifard, M ; Haghighi, S ; Gholami, M ; Sharif University of Technology
    2013
    Abstract
    TiO2-based photocatalysts are seen as the most common agents for the photodegradation of bacteria. In this study, AgCl/TiO2, hydroxyapatite(Hp)/AgCl/TiO2, AgI/TiO2, and Hp/AgI/TiO2 were prepared by the deposition-precipitation method on P25 TiO2 nanoparticles and were characterized by XRD, SEM, FT-IR, EDX and BET methods. The prepared composites showed high efficiency for the inactivation of Escherichia coli (E. coli) bacteria under visible light and in dark media with different catalyst amounts of 12 and 24 mg, respectively. In less than 30 min, AgI/TiO2, prepared by the combination of cationic surfactant and PVPI2, disinfected 1 × 107 colony-forming units of E. coli completely. However,... 

    Pemphigus vulgaris and infections: A retrospective study on 155 patients

    , Article Autoimmune Diseases ; Volume 2013 , 2013 ; 20900430 (ISSN) Esmaili, N ; Mortazavi, H ; Noormohammadpour, P ; Boreiri, M ; Soori, T ; Vasheghani Farahani, I ; Mohit, M ; Sharif University of Technology
    2013
    Abstract
    Background. Autoimmune process and immunosuppressive therapy of pemphigus vulgaris would predispose the patients to infections. Aim. We aimed to study the prevalence of infection and pathogenic agents in pemphigus vulgaris patients admitted to dermatology service. Material and methods. This retrospective study was conducted on 155 pemphigus vulgaris patients (68 males, 87 females) admitted to dermatology service between 2009 and 2011. In this study, the diagnosis of pemphigus vulgaris was confirmed by light microscopic and direct immunofluorescence findings. Data were collected through a questionnaire. Results. Of 155 pemphigus vulgaris patients, 33 had infection at admission and 9 acquired... 

    Dextran-graft-poly(hydroxyethyl methacrylate) gels: A new biosorbent for fluoride removal of water

    , Article Designed Monomers and Polymers ; Volume 16, Issue 2 , 2013 , Pages 127-136 ; 1385772X (ISSN) Ahmari, A ; Mousavi, S. A ; Amini Fazl, A ; Amini Fazl, M. S ; Ahmari, R ; Sharif University of Technology
    2013
    Abstract
    Synthesis of dextran-graft-poly(hydroxyethyl methacrylate) gels as a new fluoride biosorbent was considered in this work. For this propose, the Taguchi experimental design method was used for optimizing the synthetic conditions of the gels to reach high level of fluoride absorbency. The effects of three main parameters including concentrations of monomer (hydroxyethyl methacrylate), crosslinking agent (ethylene glycol dimethacrylate), and initiator (ammonium persulfate) on the final properties of the prepared gels were investigated. The proposed mechanism for grafting and chemically crosslinking reactions was proved with equilibrium water absorption, Fourier-transformed infrared, scanning... 

    Functional properties of biodegradable corn starch nanocomposites for food packaging applications

    , Article Materials and Design ; Volume 50 , 2013 , Pages 954-961 ; 02613069 (ISSN) Heydari, A ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this research, response surface methodology (RSM) was applied to study the effects of Na-Montmorillonite (Na-MMT) and glycerol on some functional properties of corn starch films. Films were prepared by casting method according to central composite design (CCD). Originally image processing technique was used in order to estimate transparency of the films. It was found that Na-MMT absorbed UV light from 216 to 266. nm. No antimicrobial activities were observed against Escherichia coli and Staphylococcus aureus. Contact angle analysis revealed hydrophilicity of starch films decreased utilizing nanoparticles and increased with plasticizer content. Increase in glycerol content decreased... 

    Thermochemical properties of some vinyl chloride-induced DNA lesions: Detailed view from NBO & AIM analysis

    , Article Structural Chemistry ; Volume 23, Issue 6 , 2012 , Pages 1987-2001 ; 10400400 (ISSN) Tehrani, Z. A ; Torabifard, H ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Etheno-damaged DNA adducts such as 3,N4- ethenocytosine, N 2,3-ethenoguanine, and 1,N2-ethenoguanine are associated with carcinogenesis and cell death. These inevitable damages are counteracted by glycosylase enzymes, which cleave damaged nucleobases from DNA. Escherichia coli alkyl purine DNA glycosylase is the enzyme responsible for excising damaged etheno adducts from DNA in humans. In an effort to understand the intrinsic properties of these molecules, we examined gasphase acidity values and proton affinities (PA) of multiple sites of these molecules as well as equilibrium tautomerization and base pairing properties by quantum mechanical calculations. We also used calculations to compare... 

    Adverse effects of graphene incorporated in TiO 2 photocatalyst on minuscule animals under solar light irradiation

    , Article Journal of Materials Chemistry ; Volume 22, Issue 43 , 2012 , Pages 23260-23266 ; 09599428 (ISSN) Akhavan, O ; Ghaderi, E ; Rahimi, K ; Sharif University of Technology
    2012
    Abstract
    The adverse effect of graphene-titanium oxide composite films (containing sheet-like surface morphology) on Caenorhabditis elegans nematodes (as a model for minuscule animals) was investigated in a solar light-induced photocatalytic process. X-ray photoelectron spectroscopy demonstrated photocatalytic reduction of the chemically exfoliated graphene oxide sheets included in the TiO 2 film. Furthermore, formation of TiC and Ti-O-C bonds in the composite film (obtained through annealing at 450 °C in air) resulted in a substantial delay in the recombination rate of the photoexcited electron-hole pairs and more efficient photocatalytic processes. The composite film showed a type of... 

    Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 3 , 2012 , Pages 473-478 ; 17351472 (ISSN) Nasirahmadi, S ; Safekordi, A. A ; Sharif University of Technology
    2012
    Abstract
    While energy consumption is increasing worldwide due to population growth, the fossil fuels are unstable and exhaustible resources for establishing sustainable life. Using biodegradable compounds present in the wastewater produced in industrial process as a renewable source is an enchanting approach followed by scientists for maintaining a sustainable energy production to vanquish this problem for ulterior generations. In this research, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with humic acid as anodic electron mediator and a cathode compartment including combinational electron acceptor. Escherichia coli was able to use the... 

    Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner

    , Article Carbon ; Volume 50, Issue 5 , 2012 , Pages 1853-1860 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2012
    Abstract
    Interactions of chemically exfoliated graphene oxide (GO) nanosheets and Escherichia coli bacteria living in mixed-acid fermentation with an anaerobic condition were investigated for different exposure times. X-ray photoelectron spectroscopy showed that as the exposure time increased (from 0 to 48 h), the oxygen-containing functional groups of the GO decreased by ∼60%, indicating a relative chemical reduction of the sheets by interaction with the bacteria. Raman spectroscopy and current-voltage measurement confirmed the reduction of the GO exposed to the bacteria. The reduction was believed to be due to the metabolic activity of the surviving bacteria through their glycolysis process. It was... 

    Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO 2 composites

    , Article Materials Science in Semiconductor Processing ; Volume 15, Issue 1 , February , 2012 , Pages 73-79 ; 13698001 (ISSN) Padervand, M ; Elahifard, M. R ; Vatan Meidanshahi, R ; Ghasemi, S ; Haghighi, S ; Gholami, M. R ; Sharif University of Technology
    2012
    Abstract
    Zeolite-based Ag/AgBr and Ag/AgBr/TiO 2 photocatalysts were prepared by sol-gel and deposition methods and were characterized. Their photocatalytic activities were evaluated by inactivation of Escherichia (E.) coli and the photodegradation of Acid Blue 92 and potassium permanganate. The composites containing Ag/AgBr showed the antibacterial activity in the dark by releasing Ag ions into the medium. The results for inactivation of E. coli indicated that Ag/AgBr/TiO 2 modified photocatalyst had better antibacterial activity than Ag/AgBr/zeolite, while zeolite and TiO 2/zeolite did not show any antibacterial activity under visible light and dark conditions. Photodecolarization rate was affected... 

    Novel silver nano-wedges for killing microorganisms

    , Article Materials Research Bulletin ; Volume 46, Issue 11 , 2011 , Pages 1860-1865 ; 00255408 (ISSN) Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    Abstract
    In the current study, for the first time, photochemical facile green synthesis of salep capped silver nano-wedges was reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent caused mild reduction of silver ions to the silver nano-wedges. Salep as an effective capping/shaping polysaccharide bioresource material was used in the reaction medium and caused creation of flower-like self-assembled structures of the silver nano-wedges. The formation of silver nano-wedges and their flower-like self-assembled structures was confirmed by SEM technique. Further investigations were carried out using UV-vis, FTIR, GPC and XRD data. The prepared silver nano-wedges... 

    Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

    , Article Materials Chemistry and Physics ; Volume 130, Issue 1-2 , October , 2011 , Pages 598-602 ; 02540584 (ISSN) Akhavan, O ; Azimirad, R ; Safa, S ; Sharif University of Technology
    2011
    Abstract
    Two types of unfunctionalized and functionalized multi-wall carbon nanotubes (MWCNTs) were prepared to be applied in fabrication of MWCNT-ZnO nanocomposite thin films with various MWCNT contents. X-ray photoelectron spectroscopy indicated formation of functional groups on surface of the functionalized MWCNTs in the MWCNT-ZnO nanocomposite. Formation of the effective carbonaceous bonds between the ZnO and the MWCNTs was also investigated through photoinactivation of Escherichia coli bacteria on surface of the both unfunctionalized and functionalized MWCNT-ZnO nanocomposites. The functionalized MWCNT-ZnO nanocomposites showed significantly stronger photoinactivation of the bacteria than the... 

    Silver nanoparticles with gelatin nanoshells: Photochemical facile green synthesis and their antimicrobial activity

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 10 , October , 2011 , Pages 4647-4658 ; 13880764 (ISSN) Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    2011
    Abstract
    In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs...