Loading...
Search for: escherichia-coli
0.008 seconds
Total 131 records

    High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 30 , November , 2020 Kiani, M ; Rabiee, N ; Bagherzadeh, M ; Ghadiri, A. M ; Fatahi, Y ; Dinarvand, R ; Webster, T. J ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    This study investigated the synthesis of Pd nanoparticles (NPs) using a high-gravity technique mediated by Salvia hispanica leaf extracts. Biological assays confirmed their antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria with significant antioxidant activity in comparison with the standards as well as low cellular toxicity on PC12 and HEK293 cell lines. To the best of our knowledge, this study can be considered as the first investigation of Pd-NPs synthesized by Salvia hispanica leaf extracts assisted by a high-gravity technique. In addition, the mentioned green synthesis procedure led to the formation of nanoparticles with considerable... 

    Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures

    , Article Ceramics International ; Volume 46, Issue 15 , October , 2020 , Pages 24267-24280 Mesbah, M ; Sarraf, M ; Dabbagh, A ; Nasiri Tabrizi, B ; Paria, S ; Banihashemian, S. M ; Bushroa, A. R ; Faraji, G ; Tsuzuki, T ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Unlike gold and silver, aluminum shows a localized surface plasmon resonance (LSPR) over a wide spectral range from ultraviolet (UV) to the visible region. Herein, we demonstrate a new process to optically couple TiO2 nanotubes (NTs) with a high-strength aluminum substrate, to achieve a synergistic enhancement of photocatalytic antibacterial effects through controlled LSPR of aluminum. The high-strength aluminum substrate was produced by tubular channel angular pressing (TCAP). Their LSPR was tailored through the formation of superficial nano-concave arrays (NCAs) with desired concave diameters. A layer of aligned TiO2 NTs was fabricated on the surface of aluminum nano-concave arrays (Al... 

    Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities

    , Article Advanced Powder Technology ; Volume 31, Issue 4 , 2020 , Pages 1402-1411 Rabiee, N ; Bagherzadeh, M ; Kiani, M ; Ghadiri, A. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The present work was aimed to account a green and eco-friendly synthesis of palladium nanoparticles using Rosmarinus officinalis leaves extracts for the first time, therefore, that can be an acceptable replacement for chemical media to improve potential biological properties. The synthesized palladium nanoparticles were fully characterized using FT-IR, XRD, FESEM, TEM and UV/Vis spectroscopy techniques. Catalytic activity was investigated by Mizoroki-Heck reaction, and optimized based on solvent, temperature and time of the reaction, and the best results were found in water as a green media without any additional reagents. Biological activity of the synthesized nanoparticles were evaluated... 

    Biosynthesis of copper oxide nanoparticles with potential biomedical applications

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3983-3999 Rabiee, N ; Bagherzadeh, M ; Kiani, M ; Ghadiri, A. M ; Etessamifar, F ; Jaberizadeh, A. H ; Shakeri, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Introduction: In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties. Materials and Methods: In this study, we aim to synthesis the copper oxide nanoparticles using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of temperature, solvent, and time of the reaction. Furthermore, the... 

    Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity

    , Article Environmental Research ; Volume 188 , 2020 Rahmati, Z ; Abdi, J ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    In the last decades, numerous attempts have been made to prevent microbial pollution spreading, using antibacterial agents. Zeolitic imidazolate framework-8 (ZIF-8) belongs to a subgroup of metal organic frameworks (MOFs) merits of attention due to the zinc ion clusters and its effective antibacterial activity. In this work, Ag-doped magnetic microporous γ-Fe2O3@SiO2@ZIF-8-Ag (FSZ-Ag) was successfully synthesized by a facile methodology in room temperature and used as an antibacterial agent against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Several characterization methods were applied to analyze the properties of the materials, and the... 

    Magnetic metal nanoparticles decorated ionic liquid with excellent antibacterial activity

    , Article Journal of Nanostructures ; Volume 10, Issue 3 , 2020 , Pages 613-623 Salari, H ; Karimi Asl, M ; Padervand, M ; Gholami, M. R ; Sharif University of Technology
    University of Kashan  2020
    Abstract
    Fe3O4 magnetic structure was synthesized with co-precipitation method. Surface of magnetic core was modified with hydrophobic BMIM[PF6] ionic liquid. The samples became antibacterial by loading gold, copper and silver nanoparticles and denoted as Fe3O4/IL/X (X=Ag, Au, Cu). X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermal gravimetric analysis (TGA), Atomic absorption spectroscopy (AAS), Fourier transform infrared (FTIR) and vibration sample magnetometer (VSM) technics were applied for catalysts characterization, metal concentration analysis and morphology monitoring. Modified nanostructures were used for inactivation of Escherichia coli as... 

    Synthesis of nanobentonite–poly(vinyl alcohol)–bacterial cellulose nanocomposite by electrospinning for wound healing applications

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 217, Issue 6 , 2020 Zeaiean Firouzabadi, P ; Ghanbari, H ; Mahmoudi, N ; Haramshahi, S. M. A ; Javadpour, J ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Polymer-based composites are used for wound healing applications. This work aims to prepare an inorganic-polymer nanocomposite based on bentonite, poly(vinyl alcohol), and bacterial cellulose by electrospinning for wound healing. The nanocomposite is synthesized using a solution intercalation technique, with 1–2 wt% nanobentonite concentration variation. The effects of commercial and laboratory-synthesized nanobentonite as well as the extract of the green walnut shell (EGWS) are examined and characterized by different techniques. The addition of nanobentonite increases the average size of fibers and tensile strength up to 200 nm and more than 15 MPa, respectively, due to the presence of... 

    The performances of the chi-square test and complexity measures for signal recognition in biological sequences

    , Article Journal of Theoretical Biology ; Volume 251, Issue 2 , 2008 , Pages 380-387 ; 00225193 (ISSN) Pirhaji, L ; Kargar, M ; Sheari, A ; Poormohammadi, H ; Sadeghi, M ; Pezeshk, H ; Eslahchi, C ; Sharif University of Technology
    2008
    Abstract
    With large amounts of experimental data, modern molecular biology needs appropriate methods to deal with biological sequences. In this work, we apply a statistical method (Pearson's chi-square test) to recognize the signals appear in the whole genome of the Escherichia coli. To show the effectiveness of the method, we compare the Pearson's chi-square test with linguistic complexity on the complete genome of E. coli. The results suggest that Pearson's chi-square test is an efficient method for distinguishing genes (coding regions) form pseudogenes (noncoding regions). On the other hand, the performance of the linguistic complexity is much lower than the chi-square test method. We also use the... 

    Synthesis, Characterization and Applications of Antibacterial Metal-Organic Framework Nanocomposites for Water Remediation

    , M.Sc. Thesis Sharif University of Technology Talebi Deylamani, Sara (Author) ; Borghei, Mehdi (Supervisor) ; Yaghmaei, Soheila (Supervisor) ; Ghobadi Nejad, Zahra (Co-Supervisor)
    Abstract
    Contaminants in drinking water, including microbial contaminants, have a great impact on the health of people in the community and can seriously threaten public health. In recent years, diseases caused by pathogenic bacteria due to the consumption of contaminated water have led to many deaths. As a result, water treatment has been one of the most important human concerns. Among the new water treatment technologies, metal-organic(MOF) frameworks are a new generation of porous materials that have properties such as high surface area, water stability and functionality due to their dual structure. As a result, they are widely used today in various scientific fields, including water purification.... 

    Highly efficient of molybdenum trioxide-cadmium titanate nanocomposites for ultraviolet light photocatalytic and antimicrobial application: Influence of reactive oxygen species

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 191 , 2019 , Pages 75-82 ; 10111344 (ISSN) Zhu, J. M ; Hosseini, M ; Fakhri, A ; Salari Rad, S ; Hadadi, T ; Nobakht, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present work we report the enhanced UV light photocatalytic performance of cadmium titanate photocatalyst by MoO 3 for Drug pollutant degradation. The nano photocatalyst sample was synthesized employing the Pechini-ultrasonic-hydrothermal route. Therefore, the nano photocatalyst were characterized by various analytical devices. The wide scan X-ray photoelectron spectral study confirmed the MoO 3 in the CdTiO 3 matrix. The crystallite size calculated with the Debye-Scherrer equation (55.4, 57.0, 61.2 and 63.1 nm for pure CdTiO 3 , MoCdTi-0, MoCdTi-1, and MoCdTi-2 nanocomposites, respectively). SEM micrographs revealed nanowire morphology indicated the crystalline nature of the sample.... 

    Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria

    , Article Journal of the American Chemical Society ; Volume 129, Issue 31 , 2007 , Pages 9552-9553 ; 00027863 (ISSN) Elahifard, M. R ; Rahimnejad, S ; Haghighi, S ; Gholami, M. R ; Sharif University of Technology
    2007
    Abstract
    Apatite-coated Ag/AgBr/TiO2 was prepared by deposition of Ag as novel metal to generate electron-hole pairs by extending the excitation wavelength to the visible-light region, AgBr, and hydroxy apatite as photosensitive material and adsorption bioceramic, respectively. The energy dispersive X-ray spectrometry clearly showed the presence of Ti, Ag, Ca, and P elements on the surface of catalyst. The bactericidal experiments in dark media indicated that only the novel catalyst shows inhibiting growth of bacteria in this case. A transmission electron microscopy image illustrated that catalyst nanoparticles adhere to the outer membrane of the cell and act as an inhibitor to the nourishment of... 

    Microstructural characterization and antibacterial activity of carbon nanotube decorated with Cu nanoparticles synthesized by a novel solvothermal method

    , Article Ceramics International ; Volume 47, Issue 18 , 2021 , Pages 25729-25737 ; 02728842 (ISSN) Cao, Y ; Moniri Javadhesari, S ; Mohammadnejad, S ; khodadustan, E ; Raise, A ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this research, carbon nanotube decorated with Cu nanoparticles (CNT/Cu) was synthesized by a new solvothermal process. Solvothermal treatment of CuSO4 and NaOH was completed in ethanol containing ultrasonically dispersed CNTs at 160 °C for 3 h. In the solvothermal process, Cu nanoparticles were heterogeneously deposited on the surface of COOH-functionalized CNTs through the reduction of the Cu+2 ions. Cu nanoparticles with the size of ≈8 nm on CNTs (and some in the solution) and strong bonding between Cu and CNT were obtained by the used process. Microstructural characterization revealed that the solvothermal method is an appropriate method for producing homogenous CNT/Cu nanostructure.... 

    Antibacterial and antifungal activity of methanolic extracts of Salix alba L. against various disease causing pathogens

    , Article Brazilian journal of biology = Revista brasleira de biologia ; Volume 83 , 2021 , Pages e243332- ; 16784375 (ISSN) Javed, B ; Farooq, F ; Ibrahim, M ; Abbas, H. A. B ; Jawwad, H ; Zehra, S. S ; Ahmad, H. M ; Sarwer, A ; Malik, K ; Nawaz, K ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    The present study was aimed to manifest the antibacterial and antifungal activity of methanolic extracts of Salix alba L. against seven Gram-positive and Gram-negative bacterial pathogens e.g. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) and Neisseria gonorrhoeae and three fungal isolates from the air such as Aspergillus terreus, A. ornatus, and Rhizopus stolonifer. Two different serotypes of S. aureus and E. coli were used. The agar well-diffusion method results showed the dose-dependent response of plant extracts against bacterial and fungal strains while some organisms were found resistant e.g. E. coli (1), S. sonnei,... 

    Improved green biosynthesis of chitosan decorated Ag- and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 32 , 2021 ; 15499634 (ISSN) Kiani, M ; Rabiee, N ; Bagherzadeh, M ; Ghadiri, A.M ; Fatahi, Y ; Dinarvand, R ; Webster, T. J ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly... 

    Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 9 , 2021 ; 22964185 (ISSN) Mansouri, M ; Khayam, N ; Jamshidifar, E ; Pourseif, T ; Kianian, S ; Mirzaie, A ; Akbarzadeh, I ; Ren, Q ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    One of the antibiotics used to treat infections is streptomycin sulfate that inhibits both Gram-negative and -positive bacteria. Nanoparticles are suitable carriers for the direct delivery and release of drug agents to infected locations. Niosomes are one of the new drug delivery systems that have received much attention today due to their excellent biofilm penetration property and controlled release. In this study, niosomes containing streptomycin sulfate were prepared by using the thin layer hydration method and optimized based on the size, polydispersity index (PDI), and encapsulation efficiency (EE%) characteristics. It was found that the Span 60-to-Tween 60 ratio of 1.5 and the... 

    Synthesis, morpho-structural properties, and catalytic performances of Pt-APA@Fe3O4/GO nanocomposite based on magnetical graphene in C–C coupling reactions and photoinactivation of E. coli

    , Article Journal of Nanoparticle Research ; Volume 23, Issue 8 , 2021 ; 13880764 (ISSN) Moniriyan, F ; Sabounchei, S. J ; Yousefi, A ; Akhavan, O ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Herein, a novel Pt-APA composite (APA = pyridinium bromide salt) based on magnetic graphene oxide was synthesized and used as an effective catalyst. In this way, Fe3O4 nanoparticles are grown on graphene oxide (GO) nanosheets by a simple and practical method which creates a unique nanostructure (Fe3O4/GO) through dispersing uniformly among graphene nanosheets. The resulted Pt-APA composite was obtained via adding PtCl2 to an ethanol solution of Fe3O4/GO and α-keto stabilized pyridinium ylide in related conditions. The synthesized nanocomposite structure was identified using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    PLGA/TiO2 nanocomposite scaffolds for biomedical applications: Fabrication, photocatalytic, and antibacterial properties

    , Article BioImpacts ; Volume 11, Issue 1 , 2021 , Pages 45-52 ; 22285652 (ISSN) Pelaseyed, S. S ; Madaah Hosseini, H. R ; Nokhbedehghan, Z ; Samadikuchaksaraei, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2021
    Abstract
    Introduction: Porous 3D scaffolds synthesized using biocompatible and biodegradable materials could provide suitable microenvironment and mechanical support for optimal cell growth and function. The effect of the scaffold porosity on the mechanical properties, as well as the TiO2 nanoparticles addition on the bioactivity, antimicrobial, photocatalytic, and cytotoxicity properties of scaffolds were investigated. Methods: In the present study, porous scaffolds consisting poly (lactide-co-glycolide) (PLGA) containing TiO2 nanoparticles were fabricated via air-liquid foaming technique, which is a novel method and has more advantages due to not using additives for nucleation compared to former... 

    Multifunctional 3D hierarchical bioactive green carbon-based nanocomposites

    , Article ACS Sustainable Chemistry and Engineering ; Volume 9, Issue 26 , 2021 , Pages 8706-8720 ; 21680485 (ISSN) Rabiee, N ; Bagherzadeh, M ; Ghadiri, A. M ; Kiani, M ; Fatahi, Y ; Tavakolizadeh, M ; Pourjavadi, A ; Jouyandeh, M ; Saeb, M. R ; Mozafari, M ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Carbon-based nanocarriers such as multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) have shown promising delivery capabilities due to their low immunogenicity, superior internalization, and suitable cell penetration efficiency. Herein, a molecular engineering strategy is advanced for the one-pot synthesized rGO/MWCNT/Fe3O4/ZnO to enhance the stability of the nanocarrier in the biological matrix; green synthesized ZnO was responsible for water uptake and reduced cytotoxicity, while Fe3O4controlled the cellular internalization for gene delivery. Surface morphology of the ensuing nanocomposite was correlated with photocatalytic and gene delivery (CRISPR/Cas9) features. For...