Loading...
Search for: heat-transfer
0.014 seconds

    Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol

    , Article International Communications in Heat and Mass Transfer ; Volume 129 , 2021 ; 07351933 (ISSN) Ahmad, S ; Ali, K ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanoparticles possess better chemical stability, mechanical resistance, thermal conductivity, physical strength and so forth as equated to pure nanoparticles. The present work describes the novel features of hybrid nanoparticles such as Titanium oxide (TiO2) and Copper (Cu) in the flow of Ethylene glycol (EG) under the induced magnetic field environment. The analysis covers the features of both pure nanofluid Cu/EG and hybrid nanofluid Cu-TiO2/EG. The concentration equation is amended by the activation energy term. The amalgamation of Cu-TiO2/EG exhibits improved and embellished thermal characteristics. A persuasive numerical technique named “Successive over Relaxation” is used to... 

    Heat and mass transfer attributes of copper-aluminum oxide hybrid nanoparticles flow through a porous medium

    , Article Case Studies in Thermal Engineering ; Volume 25 , 2021 ; 2214157X (ISSN) Ahmad, S ; Ali, K ; Rizwan, M ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanofluids possess better mechanical resistance, physical strength, chemical stability, thermal conductivity and so forth as compared to individual nanoliquids. Our approach in the present work is to offer a novel study involving MHD flow of hybrid nanoparticles with viscous dissipation effect through a porous medium past a stretching surface. A powerful tool of similarity transformation is utilized to transmute the governing flow model PDEs into ordinary ones. The entire system of nonlinear coupled differential equations along with boundary conditions is tackled numerically by means of Successive over Relaxation (SOR) technique. Two distinctive fluids, named Al2O3-Cu/water (hybrid... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls

    , Article International Journal of Nonlinear Sciences and Numerical Simulation ; 2021 ; 15651339 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Nisar, K. S ; Sharif University of Technology
    De Gruyter Open Ltd  2021
    Abstract
    The present work numerically investigates the mass and heat transport flow of micropolar fluid in a channel having permeable walls. The appropriate boundary layer approximations are used to convert the system of flow model equations in ODEs, which are then numerically treated with the quasi-linearization method along with finite difference discretization. This technique creates an efficient way to solve the complex dynamical system of equations. A numerical data comparison is presented which assures the accuracy of our code. The outcomes of various problem parameters are portrayed via the graphs and tables. The concentration and temperature accelerate with the impacts of the Peclet numbers... 

    Mhd flow of cu-al2o3/water hybrid nanofluid through a porous media

    , Article Journal of Porous Media ; Volume 24, Issue 7 , 2021 , Pages 61-73 ; 1091028X (ISSN) Ahmad, S ; Ali, K ; Ashraf, M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. In this paper, MHD hybrid nanoparticle flow with heat and mass transfer attributes is numerically investigated. Flow is taken over a stretching surface embedded in a porous medium. The governing flow model partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using a powerful tool of similarity transformations. The relevant system of differential equations and boundary conditions are numerically treated with the successive over-relaxation (SOR) technique. Heat and mass transfer features... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19165-19179 ; 0363907X (ISSN) Ali, K ; Ahmad, S ; Nisar, K. S ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of... 

    The numerical investigation of the heat transport in the nanofluids under the impacts of magnetic field: applications in industrial zone

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Adnan ; Khan, U ; Ahmed, N ; Mohyud Din, S. T ; Khan, I ; Fayz Al Asad, M ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are incorporated over the plates that are electrically conducting. The nondimensional flow model is then treated analytically (VPM), and the results are sketched against the preeminent flow parameters. The remarkable heat transfer in the nanofluid is noticed against the Eckert and Prandtl numbers, whereas the... 

    Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol

    , Article International Communications in Heat and Mass Transfer ; Volume 129 , 2021 ; 07351933 (ISSN) Ahmad, S ; Ali, K ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanoparticles possess better chemical stability, mechanical resistance, thermal conductivity, physical strength and so forth as equated to pure nanoparticles. The present work describes the novel features of hybrid nanoparticles such as Titanium oxide (TiO2) and Copper (Cu) in the flow of Ethylene glycol (EG) under the induced magnetic field environment. The analysis covers the features of both pure nanofluid Cu/EG and hybrid nanofluid Cu-TiO2/EG. The concentration equation is amended by the activation energy term. The amalgamation of Cu-TiO2/EG exhibits improved and embellished thermal characteristics. A persuasive numerical technique named “Successive over Relaxation” is used to... 

    Numerical study of lorentz force interaction with micro structure in channel flow

    , Article Energies ; Volume 14, Issue 14 , 2021 ; 19961073 (ISSN) Ahmad, S ; Ali, K ; Ahmad, S ; Cai, J ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    The heat transfer Magnetohydrodynamics flows have been potentially used to enhance the thermal characteristics of several systems such as heat exchangers, electromagnetic casting, adjusting blood flow, X-rays, magnetic drug treatment, cooling of nuclear reactors, and magnetic devices for cell separation. Our concern in this article is to numerically investigate the flow of an incompressible Magnetohydrodynamics micropolar fluid with heat transportation through a channel having porous walls. By employing the suitable dimensionless coordinates, the flow model equations are converted into a nonlinear system of dimensionless ordinary differential equations, which are then numerically treated for... 

    Heat and mass transfer attributes of copper-aluminum oxide hybrid nanoparticles flow through a porous medium

    , Article Case Studies in Thermal Engineering ; Volume 25 , 2021 ; 2214157X (ISSN) Ahmad, S ; Ali, K ; Rizwan, M ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanofluids possess better mechanical resistance, physical strength, chemical stability, thermal conductivity and so forth as compared to individual nanoliquids. Our approach in the present work is to offer a novel study involving MHD flow of hybrid nanoparticles with viscous dissipation effect through a porous medium past a stretching surface. A powerful tool of similarity transformation is utilized to transmute the governing flow model PDEs into ordinary ones. The entire system of nonlinear coupled differential equations along with boundary conditions is tackled numerically by means of Successive over Relaxation (SOR) technique. Two distinctive fluids, named Al2O3-Cu/water (hybrid... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls

    , Article International Journal of Nonlinear Sciences and Numerical Simulation ; 2021 ; 15651339 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Nisar, K. S ; Sharif University of Technology
    De Gruyter Open Ltd  2021
    Abstract
    The present work numerically investigates the mass and heat transport flow of micropolar fluid in a channel having permeable walls. The appropriate boundary layer approximations are used to convert the system of flow model equations in ODEs, which are then numerically treated with the quasi-linearization method along with finite difference discretization. This technique creates an efficient way to solve the complex dynamical system of equations. A numerical data comparison is presented which assures the accuracy of our code. The outcomes of various problem parameters are portrayed via the graphs and tables. The concentration and temperature accelerate with the impacts of the Peclet numbers... 

    Mhd flow of cu-al2o3/water hybrid nanofluid through a porous media

    , Article Journal of Porous Media ; Volume 24, Issue 7 , 2021 , Pages 61-73 ; 1091028X (ISSN) Ahmad, S ; Ali, K ; Ashraf, M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. In this paper, MHD hybrid nanoparticle flow with heat and mass transfer attributes is numerically investigated. Flow is taken over a stretching surface embedded in a porous medium. The governing flow model partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using a powerful tool of similarity transformations. The relevant system of differential equations and boundary conditions are numerically treated with the successive over-relaxation (SOR) technique. Heat and mass transfer features... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19165-19179 ; 0363907X (ISSN) Ali, K ; Ahmad, S ; Nisar, K. S ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; Volume 42, Issue 22 , 2021 , Pages 1926-1948 ; 01457632 (ISSN) Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    Long-distance heat transfer between molecular systems through a hybrid plasmonic-photonic nanoresonator

    , Article Journal of Optics (United Kingdom) ; Volume 23, Issue 1 , 2021 ; 20408978 (ISSN) Ashrafi, M ; Malekfar, R ; Bahrampour, A. R ; Feist, J ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    We theoretically study a hybrid plasmonic-photonic cavity setup that can be used to induce and control long-distance heat transfer between molecular systems through optomechanical interactions. The structure we propose consists of two separated plasmonic nanoantennas coupled to a dielectric cavity. The hybrid modes of this resonator can combine the large optomechanical coupling of the sub-wavelength plasmonic modes with the large quality factor and delocalized character of the cavity mode that extends over a large distance (∼µm). We show that this can lead to effective long-range heat transport between molecular vibrations that can be actively controlled through an external driving laser. ©... 

    Investigation of counterflow microchannel heat exchanger with hybrid nanoparticles and pcm suspension as a coolant

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Hasan, M. I ; Khafeef, M. J ; Mohammadi, O ; Bhattacharyya, S ; Issakhov, A ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The effect of the hybrid suspension on the intrinsic characteristics of microencapsulated phase change material (MEPCM) slurry used as a coolant in counterflow microchannel heat exchanger (CFMCHE) with different velocities is investigated numerically. The working fluid used in this paper is a hybrid suspension consisting of nanoparticles and MEPCM particles, in which the particles are suspended in pure water as a base fluid. Two types of hybrid suspension are used (Al2O3 +MEPCM and Cu + MEPCM), and the hydrodynamic and thermal characteristics of these suspensions flowing in a CFMCHE are numerically investigated. The results indicated that using hybrid suspension with high flow velocities... 

    A new approach to heat and mass transfer in a rotary dehumidifier: Modeling and simulation

    , Article 2005 ASME Fluids Engineering Division Summer Conference, Houston, TX, 19 June 2005 through 23 June 2005 ; Volume 1 PART B , 2005 , Pages 1049-1054 ; 0791841987 (ISBN); 9780791841983 (ISBN) Esfandiarinia, F ; Van Paassen, D ; Saidi, M. H ; Sharif University of Technology
    2005
    Abstract
    In this paper the analytical and simulation modelling of the combined heat and mass transfer processes that occur in a solid desiccant wheel is carried out. Using the numerical method, the performance of an adiabatic rotary dehumidifier is parametrically studied, and the optimal rotational speed is determined by examining the outlet adsorption-side humidity profiles. An approach to compare the solutions for different conditions used in air dehumidifier has been investigated according to the previous published studies. Comparing the simulated results with the published actual values of an experimental work substantiates the validity of model. The model accuracy with respect to the key...