Loading...
Search for: heat-transfer
0.011 seconds
Total 638 records

    Simulation of Heat Transfer in Nanoscale Flow Using Molecular Dynamics

    , M.Sc. Thesis Sharif University of Technology Abbasi, Hossein Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    We investigate heat transfer between parallel plates separated by liquid argon using three-dimensional molecular dynamics (MD) simulations incorporating with 6-12 Lennard-Jones potential between molecule pairs. We use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. Channel walls are maintained at specific temperatures using a recently developed interactive thermal wall model. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the heat transfer between wall and fluid. Heat flux and temperature distribution in nanochannels are calculated for channel height... 

    Numerical Simulation of Nano-Impinging-Jet in Electronic Cooling Applications

    , M.Sc. Thesis Sharif University of Technology Akhlaghi, Hassan (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    With a fast progress in nanotechnology devices and components, e.g., MEMS/NEMS, heat transfer study in micro/nanoscales has become so critical for the systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on-a-chip devices. Demands in high heat transfer rates have returned the concerns to impinging jet cooling systems. However, studying impinging jets in the micro/nano scales is requires the molecular dynamics knowledge to analyze the true micro/nanoscale flow behavior accurately. According to the importance of this subject, we use direct simulation Monte Carlo (DSMC) method to simulate nano impinging jet gas flows. The thesis is... 

    Feasibility and Performance Analysis of a Thermoacoustic Heat Pump

    , M.Sc. Thesis Sharif University of Technology Askari, Rasoul (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    Thermoacoustics deals with the conversion of heat energy into sound energy and vice versa. This new and emerging technology has a strong potential towards the development of sustainable and renewable energy systems by utilizing waste heat or solar energy. Although thermoacoustic devices are simple to fabricate; however, the design process is very challenging. The thermoacoustic phenomenon is discovered over a century ago; nevertheless, the rapid advancement in this field occurred during the past three decades when the theoretical understanding of the phenomenon is developed along with the prototype devices. There are several advantages of heat engines and refrigerators based on... 

    Numerical Modeling of Hydrothermal Behavior of Geothermal Tunnels in Sandy Soils

    , M.Sc. Thesis Sharif University of Technology Ashkbari, Mohammad Amin (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    Shallow geothermal energy is a renewable and sustainable form of energy that has the potential to help alleviate the growing climate and energy crisis. The most common system used to extract shallow geothermal energy is the ground source heat pump (GSHP) system. The concept of using underground structures in exploiting shallow geothermal energy for space heating and cooling has received increasing attention. This study focuses on the use of geothermal tunnels as a means of extracting shallow geothermal energy.This research examines the effects of different heat transfer mechanisms, and highlights the effects of this phenomenon by focusing on the effects of natural convection around the... 

    Multiscale Modelling of Non-Isothermal Multiphase Flow in Heterogeneous Porous Media with Computational Homogenization Approach

    , Ph.D. Dissertation Sharif University of Technology Saeedmonir, Saeed (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In the real engineering problems, the existing materials in the nature or human-made materials, contain different heterogeneities from the view of small scale. Reinforced composite materials and porous media containing grains or micro-cracks are some examples of these materials. Due to the large amount of these heterogeneities as well as the small size, direct modelling of these micro-structures requires extremely high computational and memorial cost. Also, the equivalent models introduced in the literature, have strong limitations and therefore, cannot capture accurate behavior of the material. Hence, multiscale methods have been proposed in order to model these heterogeneous media with... 

    Numerical Modeling of Hydrothermal Behavior of Geothermal Piles in Sandy Soils

    , M.Sc. Thesis Sharif University of Technology Mehraeen, Naghmeh (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    This study highlights an important distinction between heat transfer mechanism in dry and saturated soil. Soil temperature data recorded during model tests, soil thermal response predicted using finite difference and analytical methods are compared with finite element models. In recent years, due to the industrial development of human societies, the energy consumption has been increased worldwide. On the other hand, the most commonly used energy resources are non-renewable energies. Therefore, governments and industries aimed to develop a technology which provides economical use of renewable energy sources. One of the renewable energy sources is the geothermal energy of the Earth. In this... 

    Numerical Simulation of Cold and Hot Water Injection into Naturally Fractured Reservoirs Using the Extended Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Pirmoradi, Pouriya (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The present article studies the isothermal and non-isothermal water injection into naturally fractured oil reservoirs by numerical simulation. The fractures in naturally fractured reservoirs can possess different characteristics. In addition. a remarkable number of naturally fractured reservoirs contain relatively heavy oils that could not be extracted economically; hence. the thermal recovery methods are extensively used for these reservoirs. Hot water injection is one of the thermal recovery methods that has not been explored enough compared to its alternatives. In this study. the effectiveness of the hot water injection over the cold (isothermal) water injection in oil production is... 

    Thermo-Hydro-Mechanical Modeling of Fractured Deformable Porous Media with Two-phase Fluid Flow using XFEM Technique

    , M.Sc. Thesis Sharif University of Technology Mortazavi, Mohammad Sadegh (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In this study, a fully coupled thermo-hydro-mechanical model for two-phase fluid flow and heat transport in fractured/fracturing porous media is introduced using the extended finite element method (XFEM) for numerical solution. The subject is important in the environmental and industrial fields such as hydraulic fracturing in petroleum industry, CO2 geo-sequestration, geothermal energy extraction and radioactive waste disposal in unsaturated porous media. In the fractured porous media, there are couplings of traction and heat and mass transfer between the fracture space and the surrounding media. Therefore, consideration of the fracture geometry explicitly in the modeling is important to... 

    Modeling of Heat Transfer and Thermo-Mechanical Contact in Fractured Medium using XFEM Method

    , M.Sc. Thesis Sharif University of Technology Bahmani, Bahador (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Heat transfer phonomenon is very important in solids and fluids, specially in fractured medium which has a major role in response of domain.In fact the fracture in special conditions can prevent the heat flow and in different conditions can aid the heat flow and conducts it.Propagation of hydraulic fracture by non-isothermal injection in fractured domain is a problem that has many physical phenomena like modeling of porous medium, heat transfer process in medium, discontinuities presence, concevtion of heat process by hydraulic fracture, fracture propagation, interaction of hydraulic fracture with existing fractures, junctions of cracks, contact phenomenon, etc. Therfore, solving this... 

    The Finite Element Modeling of Thermodynamic Contact Problems

    , M.Sc. Thesis Sharif University of Technology Saffar Shahroudi, Hadi (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The numerical modeling of engineering contact problems is one of the most difficult and demanding tasks in computational mechanics. Frictional contact can be observed in many problems; such as: crack propagation, metal forming operation, drilling pile etc. The thermodynamic coupling problems arise naturally in many industrial processes, such as thermal protection structures ,nuclear fuel elements, layerd structures , heat exchanger as well as metal forming. In these situations predicting temperature field as well as the stress field is of considerable applied importance. When two or more bodies are forced to contact whit each other as a result of thermal or/and mechanical load thermodynamic... 

    Experimental Investigation into the Direct Contact of Working Fluid with Phase Change Material and its Effect on the Heat Transfer Rate

    , M.Sc. Thesis Sharif University of Technology Ranjbar Kermani, Javad (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The unique properties of phase change materials (PCMs), such as high latent heat and nearly constant phase change temperature, have made them a suitable option for use in thermal energy storage systems and thermal management systems. However, the low thermal conductivity of these materials has imposed limitations on their widespread use in industries. In this study, for the first time, the effect of injecting a boiling fluid (BF) into the PCM container to enhance heat transfer and accelerate the solidification process has been experimentally investigated. In this regard, paraffin wax and acetone have been selected as the PCM and the BF, and the effects of parameters such as the initial... 

    Heat and Mass Transfer in a Finite Channel

    , M.Sc. Thesis Sharif University of Technology Tohidloo, Mahdi (Author) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    The need for cooling and creating thermal comfort conditions for human life is one of today's severe challenges. Therefore, development and innovation to enhance the efficiency of these systems are of great importance. Among the new ideas proposed in this domain, we can mention the M-cycle, which can greatly improve the energy consumption for cooling systems in this sector. In this cycle, the desired cooling is produced by utilizing the latent heat of water evaporation, which is considered a kind of renewable energy. The systems based on this cycle are still under development, and for this reason, there is a necessity to better investigate the heat and mass transfer in the aforementioned... 

    Effect of Blade fin on Pressure Drop and Heat Transfer in Microchannels

    , M.Sc. Thesis Sharif University of Technology Beheshti, Alireza (Author) ; Nouri Borujerdi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Nowadays, the cooling of electronic equipment has become a challenge for designers and scientists due to their progress. One of the most effective solutions for cooling these devices is using microchannel heat sinks. Researchers conducted so many studies experimentally, numerically, or a combination of them to increase the efficiency of microchannel heat sinks. Several methods have been proposed in previous studies to improve the cooling performance, such as using fins, nanoparticles, porous material, etc. Although increasing the heat exchange surface by using fins is caused to increase heat transfer, it also causes an increase in pressure drop. For this reason, researchers are looking for... 

    Optimization of Multi-Layered PCM Arrangement for Battery 18650 Thermal Management

    , M.Sc. Thesis Sharif University of Technology Pakravan, Shayan (Author) ; Aryanpour, Masoud (Supervisor) ; Shafie, Mohammad Behshad (Supervisor)
    Abstract
    Lithium-ion batteries have the ability to store a significant amount of energy and work at high power, which has led to the wide spread of their use in various industries. In high-power applications, battery heat management increases lifespan, safety, and reduces battery power loss. In this study, the heat management of a very common and widely used 18650 battery using multi-layered phase change material has been investigated. The reason for using multiple layers is that each phase change material has its own weaknesses in addition to its advantages. It is expected that with the proper use of several phase change materials in the thermal management system, the materials will reduce the... 

    Experimental Investigation of Temperature Reduction of Photovoltaic Panels Using Porous Media

    , M.Sc. Thesis Sharif University of Technology Karamnejad, Sepehr (Author) ; Nouri Borojerdi, Ali (Supervisor)
    Abstract
    The limitation of fossil fuel sources and environmental damage caused by use of these fuels have made researches on applications of renewable energy, especially solar energy, to be an important issue in recent years. An important issue that arises in the use of photovoltaic panels is the reduction of their efficiency with increasing their temperature. By increase of a degree of Celsius, the efficiency of the photovoltaic panel decreases by 0.45%. The aim of this project is to reduce the temperature of the photovoltaic panel by using porous medium and air. The porous medium used as fins under the panel.Experimental results have shown that by using the medium placed under the photovoltaic... 

    Dynamics and Heat transfer of Two-phase Non-Newtonian Fluids in Superhydrophobic Channels

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Arghavan (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    When the fluid passes through the microchannel, some energy is lost due to drag force and pressure drop. One of the methods used in the last few decades to optimize energy consumption is creating superhydrophobic surfaces in microchannels. These surfaces, with their features such as increasing the contact angle and reducing the contact angle hysteresis, can reduce energy loss, which is due to the presence of unevenness on the surface, and by trapping air and creating a two-phase flow, they reduce the drag force. On the other hand, the air trapped inside these irregularities will also affect the heat transfer of the passing fluid in the microchannel, which by creating resistance in the... 

    Fabrication and Investigation of Condensation Performance of Hybrid and Solid – Infused Surfaces

    , M.Sc. Thesis Sharif University of Technology Rezaee, Behzad (Author) ; Mousavi, Ali (Supervisor) ; Aryanpour, Masood (Supervisor)
    Abstract
    Increasing energy consumption and limited energy resources are instances of the concerns of human societies and environmentalists today. The condensation process, as one of the most important processes in the industry, plays an important role in saving and regeneration the existing energy. Nowdays, surface optimization is one of the modern ways to improve condensation.In this research, two methods have been used to construct surfaces useful for enhancement of droplet condensation, including hybrid surfaces and solid infused surfaces. In the construction of hybrid surfaces, superhydrophobic coating with silica nanoparticles based on hydroxyl acrylic resin was used. The superhydrophilic parts... 

    A Numerical Model Development for Cryogenic Spiral Wound Heat Exchanger Design Considering Temperature dependent thermo-physical properties, Heat Leakage, and Longitudinal Heat Conduction

    , M.Sc. Thesis Sharif University of Technology Beheshtikhoo, Amir (Author) ; Afshin, Hossein (Supervisor)
    Abstract
    Cryogenic temperature is below than 123 Kelvin and any physical study that occurs below this temperature is Cryogenic science. Cryogenic has varaiety of application in medical, industry, food, oil and gas etc. Based on this paper and its relavant source spiral wound HE is one of the most optimum HE for cryogenic application specially for helium liquification cycle. In order to liquefy helium in helium cycle efficiency of spiral wound HE shall be over than 85 percent. For this reason and special fluid behavour in low temperature considering property variation, heat in leak and axial conduction is vital for calculating efficiency in cryogenic temperature of helium liquification cycle. In this... 

    Experimental Investigation of the Porous Media Permeability Effect on Heat Transfer and Pressure Drop in Internal of Tube

    , M.Sc. Thesis Sharif University of Technology Salimi, Milad (Author) ; Nouri Broujerdi, Ali (Supervisor)
    Abstract
    The purpose of this study is investigation of the effect of the porous medium permeability on heat transfer and pressure drop inside tube and compare the results with non-porous tube. In order to create porous medium in this research iron bullets with 2.93, 4.74 and 6.97 (mm) diameters has been used in test tube. Test tube made of copper with an inner diameter of 2 cm and has 1meter length. This experiment is done in steady state, transient and turbulent flow regime (2600< <12260) and also for constant heat flux boundary condition . The experimental results show that the values of heat transfer and pressure drop of porous pipe is always greater than non-porous pipe and these values will... 

    Experimental Investigation of Convective Heat Transfer and Pressure Loss in a Circular Tube With Suspeded Ball Turbulators

    , M.Sc. Thesis Sharif University of Technology Aghli ChanCheh, Alireza (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Flow turbulators have crucial importance in heat transfer and energy harvesting applications. Therefore, in this study, the thermo-hydraulic and vibrational behavior of the floe inside a circular tube with vibrational ball turbulators (VBTs) on an axial elastic wire is experimentally studied for the first time. In this novel design, the elastic wire facilitates turbulence by allowing VBTs to move transversally and rotationally and agitate the flow substantially. The effects of diameter and longitudinal distance (pitch) ratios of VBTs, the Reynolds number, and the axial tension of the wire, on the flow friction factor (f), the Nusselt number (Nu), the thermal performance factor (η), in...