Loading...
Search for: hydrogels
0.009 seconds
Total 326 records

    Constitutive modeling of rubberlike materials based on consistent strain energy density functions

    , Article Polymer Engineering and Science ; Volume 50, Issue 5 , 2010 , Pages 1058-1066 ; 00323888 (ISSN) Darijani, H ; Naghdabadi, R ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    Rubberlike materials are characterized by high deformability and reversibility of deformation. From the continuum viewpoint, a strain energy density function is postulated for modeling the behavior of these materials. In this paper, a general form for the strain energy density of these materials is proposed from a phenomenological point of view. Based on the Valanis-Landel hypothesis, the strain energy density of incompressible materials is expressed as the sum of independent functions of the principal stretches meeting the essential requirements on the form of the strain energy density. It is cleared that the appropriate mathematical expressions for constitutive modeling of these materials... 

    Synthesis and swelling behavior of acrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide) hydrogels

    , Article Carbohydrate Polymers ; Volume 79, Issue 4 , 2010 , Pages 933-940 ; 01448617 (ISSN) Pourjavadi, A ; Eftekhar Jahromi, P ; Seidi, F ; Salimi, H ; Sharif University of Technology
    Abstract
    In the present work, synthesis and swellability of acrylatedstarch-based hydrogels was investigated. Acrylic groups were introduced onto starch backbone by a homogeneous synthesis to produce starch monomers with three different degree of substitution (DS). The radical copolymerization of acrylatedstarch (AST) with acrylic acid (AA) and acrylamide (AAm) was carried out in aqueous solution using ammonium persulfate (APS) as an initiator. Infrared spectroscopy (FT-IR) and TGA thermal analysis were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). Their equilibrium swelling degree was evaluated... 

    Novel modified starch-xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization

    , Article Carbohydrate Polymers ; Volume 79, Issue 4 , 2010 , Pages 898-907 ; 01448617 (ISSN) Shalviri, A ; Liu, Q ; Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    Abstract
    This work was intended to develop a new cross-linked gelatinized starch-xanthan gum hydrogel system, to characterize the properties of the new material, and to explore its potential applications in controlled drug delivery. Cross-linked starch-xanthan gum polymers were synthesized with varying levels of xanthan gum and sodium trimetaphosphate (STMP). The reaction of starch-xanthan gum polymers with STMP was examined using solid 31P NMR spectroscopy and FTIR. Morphology of the films made from the new polymers was studied by scanning electron microscopy. The swelling properties and the network parameters such as gel mesh size of the films were investigated. The permeation of solutes with... 

    Solvent-, ion- and pH-specific swelling of poly(2-acrylamido-2- methylpropane sulfonic acid) superabsorbing gels

    , Article Journal of Polymer Research ; Volume 17, Issue 2 , 2010 , Pages 203-212 ; 10229760 (ISSN) Kabiri, K ; Zohuriaan Mehr, M. J ; Mirzadeh, H ; Kheirabadi, M ; Sharif University of Technology
    2010
    Abstract
    Homopolymer hydrogel of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and its nanocomposite counterpart were prepared to study their swelling properties. The hydrogels showed ability to absorb and retain electrolytes as well as binary mixtures of water and organic solvents (i.e., methanol, ethanol, acetone, ethylene glycol (EG), polyethylene glycol, N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The nanocomposite gel exhibited lower swelling in all solvent compositions in comparison with non-composite gel. Unlike conventional acrylic acid-based hydrogels, the poly(AMPS) gels showed superabsorbing capacity in pure ethanol, methanol, EG, DMSO and NMP. Meanwhile, swelling... 

    Mechanical Properties Enhancement of Hydrogel Scaffolds Using Combination of Electrospun Nanofibers

    , M.Sc. Thesis Sharif University of Technology Moghaddam Deymeh, Saeed (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    Cardiovascular disease is responsible for a majority of health problem in developing countries. Heart diseases are the leading cause of death in the United State with approximately 40% of the death occurs by heart failures and coronary artery defects. Myocardial infarction is one of the diseases that occurs by coronay artery blockage. Cardiac tissue engineering (CTE) is an emerging field that holds great promise towards the development of innovative treatment strategies for heart disease. There are two common scaffolds for CTE, electrospun fiber mats and hydrogels. Although fibers are known as 3D environment for cells, they actually act as a 2D surface, because of lack of cell infilteration.... 

    Synthesis of Double Network Hydrogels Based on Chitosan, Alginate, and Poly (Vinyl Alchohol) with High Mechanical Properties and Investigation of Their Biocompatibility

    , M.Sc. Thesis Sharif University of Technology Tavakkoli, Elham (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Double network (DN) hydrogels are a new interpenetrate polymer network (IPN) that are usually contain about 60-90 % water. Despite of this amount of water, they are though and strong. DN hydrogels comprise of two networks, the first one as the brittle gel, is generally high density crosslinked and the second one, the loose and stretchable network, is loosely crosslinked or even without crosslinking. Therefore, we used cationic polymer, chitosan, and anionic polymer, alginate, as the first networks, therefore, we used sodium phosphate for physical crosslinking of chitosan, and calcium chloride as the physical crosslinking agents for alginate network. Also, poly (vinyl alcohol) (PVA), as the... 

    Effect of different bases and neutralization steps on porosity and properties of collagen-based hydrogels

    , Article Polymer International ; Volume 59, Issue 1 , 2010 , Pages 36-42 ; 09598103 (ISSN) Pourjavadi, A ; Kurdtabar, M ; Sharif University of Technology
    Abstract
    The aim of the work reported was to investigate the effect of bases and neutralization steps on hydrogel microstructures. A series of porous hydrogels with various pore sizes were prepared by neutralizing a conventional hydrogel after gel formation. Scanning electron microscopy was used to characterize the microstructure of the porous hydrogels. The morphology of the samples showed the pores were induced into the hydrogels by water evaporation and gas release resulting from the neutralization process. Experimental results indicated that the hydrogels had an absorbency of 200-220 and 48-50 g g-1 for distilled water and sodium chloride solutions, respectively. A simple method was used to... 

    Synthesis and Characterization of ATPEG-PMDA Hydrogels Conjugated with Thermo-Responsive Coated Magnetic Nanoparticles for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Abdorahim, Marjan (Author) ; Simchi, Abdoreza (Supervisor)
    Abstract
    A novel thermo responsive decorated system is designed by coating Fe3O4 magnetic nanoparticles with conjugated Pluronic-ATPEG copolymer incorporated into the PEG-PMDA Hydrogel for drug delivery to the cartilage tissue. Grafted copolymer was synthesized by reaction between carboxylated Pluronic and amino terminated Poly ethylene glycol (ATPEG) and confirmed by FTIR and NMR analysis. The magnetic nanoparticles were modified with the produced copolymer and characterized by TEM, HRTEM, XRD, DLS, and VSM. A typical product has 13 nm magnetic core and 105 nm hydrodynamic diameter with narrow size distribution. DLS results showed that there was an increase in size by increasing temperature from 25℃... 

    Poly (Vinyl Alcohol) Hydrogel/Nano-diamond as a Replacement for the Nucleus Pulposus

    , M.Sc. Thesis Sharif University of Technology Haddadi, Sara (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    The nucleus pulposus, which is a part of intervertebral disc, is normally hydrated and gel-like to maintain normal biomechanical functions of the disc through intradiscal pressures. In a degenerated disc, however, water content of nucleus is significantly reduced, resulting in an abnormal stress state of the annulus. Surgical interventions cannot restore the biomedical function to vertebral segment. One approach to restore the normal biomechanics of an intervertebral disc is to replace the nucleus with a prosthetic material which leads to a restoration of the behavior of the disc. The mechanical behavior of poly(vinyl alcohol) and nanodiamond hydrogel may provide a material suitable for... 

    Improvement in mechanical performance of anionic hydrogels using full-interpenetrating polymer network reinforced with graphene oxide nanosheets

    , Article Advances in Polymer Technology ; Volume 35, Issue 4 , 2016 , Pages 386-395 ; 07306679 (ISSN) Kheirabadi, M ; Bagheri, R ; Kabiri, K ; Ossipov, D. A ; Jokar, E ; Asadian, E ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    Weak mechanical possession is one of the limiting factors in application of hydrogels. To modify this inherent disadvantage, different approaches have been studied including synthesizing interpenetrating polymer network (IPN) and nanocomposite hydrogels. So, this study has focused on preparation of a novel full-IPN structure based on anionic monomers of 2-acrylamido-2-methylpropane sulfonic acid/acrylic acid–sodium acrylate via facile solution polymerization technique in an aqueous media with incorporation of graphene oxide (GO) nanosheets. Mechanical performance of materials in the “as-prepared condition” and “swollen state” was characterized via tensile, compression, and rheology tests,... 

    Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions

    , Article Biomacromolecules ; Volume 17, Issue 11 , 2016 , Pages 3441-3463 ; 15257797 (ISSN) Eslahi, N ; Abdorahim, M ; Simchi, A ; Sharif University of Technology
    American Chemical Society 
    Abstract
    Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material... 

    Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications

    , Article Starch/Staerke ; Volume 68, Issue 11-12 , 2016 , Pages 1275-1281 ; 00389056 (ISSN) Nourmohammadi, J ; Shahriarpanah, S ; Asadzadehzanjani, N ; Khaleghpanah, S ; Heidari, S ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    The formation of biomimetic bone-like apatite layers throughout the biopolymer-based hydrogel scaffold is an attractive approach in bone tissue engineering. Here, the starch scaffold was prepared using a combination of particulate leaching and freeze-drying techniques. The fabricated structures were then modified by citric acid to investigate the formation of bone-like apatite layer on the porous citrate-based scaffold after soaking in simulated body fluid (SBF). The Fourier Transform Infrared (FTIR) spectra and X-ray diffraction (XRD) patterns revealed that the B-type carbonated apatite has successfully deposited on the scaffold after immersing in SBF for 28 days. Indeed, high chemical... 

    Effect of gamma ray on magnetic bio-nanocomposite

    , Article Materials Chemistry and Physics ; Volume 170 , 2016 , Pages 71-76 ; 02540584 (ISSN) Asadi, S ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Magnetic polyvinyl alcohol (M-PVA) films were prepared via solution casting filled with surface modified superparamagnetic nanoparticles (M-NPs). The M-NPs were coated with citric acid during synthesis. The chemical interaction between the citric acid and M-NPs was confirmed by Fourier transform infrared spectroscopy (FTIR). The average hydrodynamic diameter of M-NPs was 19.7 nm measured by dynamic light scattering DLS and appeared almost spherical in scanning electron microscopy (SEM). The M-NPs were uniformly dispersed in polyvinyl alcohol (PVA) matrix and showed high optical transparency with good mechanical properties. M-PVA hydrogels were synthesized using gamma irradiation. The... 

    Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels

    , Article Journal of Intelligent Material Systems and Structures ; Volume 27, Issue 3 , 2016 , Pages 324-336 ; 1045389X (ISSN) Mazaheri, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    The aim of this work is to develop a model to continuously predict inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels. Employing this model, some benchmark homogeneous problems such as free, unidirectional constrained and biaxial constrained swelling as well as swelling of core-shell structures are investigated. The main advantage of the model is its ability to solve inhomogeneous deformations due to a stable behavior in the vicinity of the phase transition temperature. Therefore, inhomogeneous swelling of a spherical shell on a hard core with application to microfluidics is analytically and numerically investigated for various... 

    Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue

    , Article RSC Advances ; Volume 6, Issue 13 , 2016 , Pages 10430-10437 ; 20462069 (ISSN) Pourjavadi, A ; Nazari, M ; Kabiri, B ; Hosseini, S. H ; Bennett, C ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Porous nanocomposite hydrogels were prepared using CaCO3 particles as solid porogens. The hydrogels were prepared by polymerization and grafting of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid onto the starch in the presence of CaCO3 and graphene oxide. CaCO3 solid porogens were then removed by washing with acid and porous structures were obtained. The prepared hydrogels were used as adsorbents for methylene blue as a model cationic dye; and a very high adsorption capacity, up to 714.29 mg g-1, was obtained. Kinetics and isotherms of adsorption and the effect of porosity of hydrogel as well as other experimental conditions were also investigated. The prepared adsorbents were... 

    Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 33 , 2016 , Pages 21107-21133 ; 19448244 (ISSN) Karimi, M ; Sahandi Zangabad, P ; Ghasemi, A ; Amiri, M ; Bahrami, M ; Malekzad, H ; Ghahramanzadeh Asl, H ; Mahdieh, Z ; Bozorgomid, M ; Ghasemi, A ; Rahmani Taji Boyuk, M. R ; Hamblin, M. R ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Smart drug delivery systems (DDSs) have attracted the attention of many scientists, as carriers that can be stimulated by changes in environmental parameters such as temperature, pH, light, electromagnetic fields, mechanical forces, etc. These smart nanocarriers can release their cargo on demand when their target is reached and the stimulus is applied. Using the techniques of nanotechnology, these nanocarriers can be tailored to be target-specific, and exhibit delayed or controlled release of drugs. Temperature-responsive nanocarriers are one of most important groups of smart nanoparticles (NPs) that have been investigated during the past decades. Temperature can either act as an external... 

    Preparation and evaluation of hydrogel composites based on starch-g-PNaMA/eggshell particles as dye biosorbent

    , Article Desalination and Water Treatment ; Volume 57, Issue 39 , 2016 , Pages 18144-18156 ; 19443994 (ISSN) Bakhshi, H ; Darvishi, A ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    In this study, eggshell (ES) particles as an available and low-cost waste material were used for preparing hydrogel composites as dye biosorbents. For this purpose, hydrogel composites were prepared through free-radical graft copolymerization of wheat starch and sodium methacrylate (NaMA) in the presence of different contents of ES particles with various size ranges. FTIR spectroscopy confirmed graft copolymerization of NaMA moieties onto starch backbone besides the combination of ES particles with the starch-g-PNaMA matrix. The gel content values were high (>99%), which showed proper graft efficiency for hydrogel composites. Incorporation of ES particles into hydrogel matrix resulted in... 

    Nanofibrous hydrogel with stable electrical conductivity for biological applications

    , Article Polymer (United Kingdom) ; Volume 97 , 2016 , Pages 205-216 ; 00323861 (ISSN) Hosseinzadeh, S ; Rezayat, S. M ; Vashegani Farahani, E ; Mahmoudifard, M ; Zamanlui, S ; Soleimani, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    3D hydrogel environment with both unique properties of nanofibrous structure and electrical character can provide a promising scaffold for skeletal muscle tissue engineering approaches. Herein, the poly acrylic acid (PAA)-based hydrogel was engineered to conductive one by aniline polymerization in the form of nanofibers. The poly aniline (PANi) nanofibers were made by the optimized chemical reactions between the surface carboxylate groups of based hydrogel and protonated aniline monomers. We found that the strong bonding which was created between PANi and camphor sulphonic acid (CSA) as a doping agent supporting the stable electrical property of composite hydrogel after incubation in cell... 

    Synthesis of mesoporous TiO2 structures through P123 copolymer as the structural directing agent and assessment of their performance in dye-sensitized solar cells

    , Article Solar Energy ; Volume 133 , 2016 , Pages 24-34 ; 0038092X (ISSN) Abdolahi Sadatlu, M. A ; Mozaffari, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A novel and efficacious strategy was implemented for creation of mesoporous TiO2 films and powder through an integration of sol-gel and evaporation-induced self-assembly (EISA) processes aided by triblock Pluronic P123. A mesoporous crack-free thin film with virtual thickness of 300 nm was attained under 10% relative humidity aging, for 72 h at the low temperature of 5 °C. Further, the TiO2 film with porous structure has been formed from conventional paste, exploiting as-prepared mesoporous titania powder. The X-ray Diffraction (XRD) of synthesized mesoporous powder disclosed formation of anatase phase as well as rutile phase, in such a manner that the latter constituted a very small... 

    Oscillatory response of charged droplets in hydrogels

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 234 , 2016 , Pages 215-235 ; 03770257 (ISSN) Mohammadi, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Characterization of droplet-hydrogel interfaces is of crucial importance to engineer droplet-hydrogel composites for a variety of applications. In order to develop electrokinetic diagnostic tools for probing droplet-hydrogel interfaces, the displacement of a charged droplet embedded in a polyelectrolyte hydrogel exposed to an oscillating electric field is determined theoretically. The polyelectrolyte hydrogel is modeled as an incompressible, charged, porous, and elastic solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no charges within the droplet. The droplet-hydrogel interface is modeled as a surface with the thickness of zero...