Loading...
Search for: hydrogels
0.013 seconds
Total 320 records

    Stem Cell Proliferation and Differentiation in Bioreactors

    , M.Sc. Thesis Sharif University of Technology Rezaei, Maryam (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor)
    Abstract
    In this study, differentiation of rabbit embryonic-derived mesenchymal stem cells to osteogenic cells has been characterized. Bone tissue engineering is based upon the understanding of bone tissue construct and it’s formation in-vivo, and the Preparation of tissue engineered bone constructs to repair large size defects is it’s major goal. We sought to investigate the combined effect of three elemnts of tissue engineering: cells, scaffolds and growth factors. Mesenchymal stem cells are unspecialized cells which due to their unlimited self-renewal capacity and the remarkable ability to differentiate along multiple linage pathways are natural choice for application in tissue repair and... 

    3D Bioprinting of Amniotic Membrane-Based Nanocomposite for Tissue Engineering Applications: Evaluation of Rheological, Mechanical and Biological Properties

    , Ph.D. Dissertation Sharif University of Technology Kafili, Golara (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor) ; Niknejad, Hassan (Co-Supervisor)
    Abstract
    3D bioprinting is an additive manufacturing method that facilitates the deposition of the desired cells and biomaterials at any pre-defined location. This technique also enables control over the internal structure and external dimensions of printed constructs. Among various biomaterials used as bioinks, the bioinks derived from decellularized extracellular matrixes (dECMs) have attracted significant attention due to their bioactivity and being a rich source of biochemical cues. Here in this study, the decellularized amnion membrane (dAM) has been selected as the main component of the bioink formulation because of its biocompatibility, low immunogenicity, antibacterial property, abundance,... 

    Electric-field-induced Response of Charged Droplets in Uncharged Hydrogels

    , M.Sc. Thesis Sharif University of Technology Maghsoudnia, Abolfazl (Author) ; Mohammadi, Ali Asghar (Supervisor)
    Abstract
    The electric field induced response of a charged droplet in an uncharged gel is calculated theoretically. For modeling, the gel is considered as a soft porous solid that is saturated with a Newtonian electrolyte and modeled as a continuum that contains 3 phases: a porous, soft and compressible solid, an incompressible Newtonian fluid and the ions inside fluid. Droplet is modeled as a charged incompressible Newtonian fluid immiscible with the gel. The droplet-gel interface is considered as a surface with electrostatic potential ζ . After obtaining governing equations, they solved by using perturbation methodology and linear superposition. Boundary conditions, especially at the droplet-gel... 

    Hydrolyzed Protein-Based Highly Porous Hydrogels: Synthesis and Characteristics

    , Ph.D. Dissertation Sharif University of Technology Kurdtabar, Mehran (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    This thesis focuses on the preparation and super-swelling behavior of four highly porous hydrogels: 1. Firstly, we have developed a collagen-based highly porous hydrogel by neutralizing the grafted poly(acrylamide-co-acrylic acid) after gel formation. Systematically, the certain variables of the graft copolymerization were optimized to achieve maximum swelling capacity. Morphology of the samples was examined by scanning electron microscopy (SEM) and was shown the pores were induced into the hydrogel by water evaporation resulting from neutralization process. The absorbency under load (AUL) and centrifuge retention capacity (CRC) were measured. The synthesized hydrogel exhibited a... 

    Comparing Effects of Natural Antibiotics and Anti Bacterial Materials in Burn Wound Infections with Nanoparticles and Skin Scaffold

    , M.Sc. Thesis Sharif University of Technology Ramezani, Bita (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Burns are one of the most important accidents related to human health. Due to the intense physical and mental complications and high fatality rate associated with them, receiving proper treatment is of paramount importance. The control of infection in wounds would cure and eliminates the effect of wounds and treatment of skin lesions with engineered scaffolds can be an effective method. The purpose of this project is proposing a hydrogel scaffold based on natural polymers of oxidized alginate and gelatin loaded with an herbal drug to control infection and treat burn wounds. For this purpose, the Iranian Oak extract that it's main content is Tanin and PolyPhenolinc materials, was prepared and... 

    Study and Fabrication of a Multilayer Scaffold Containing Biological Agents for Skin Wounds Regeneration

    , Ph.D. Dissertation Sharif University of Technology Hajiabbas, Maryam (Author) ; Alemzadeh, Iran (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    In recent years, it is expected that the fabrication of multilayer scaffolds and the use of different methodologies in one product can be a new progressing method in skin substitute production. Accordingly, this project aims to fabricate a bilayered composite scaffold with a combination of hydrogel and electrospinning method. We have tried to prepare a scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) without using corrosive solvents and toxic crosslinking agents as a scaffold and drug delivery system. As different biological, chemical, physical, and mechanical factors play a vital role in the healing process, we have characterized the proposed scaffold via DSC,... 

    Charactrization of Oxidized Alginate- Gelatin Composite Hydrogel Reinforcement by Ti3C2Tx Mxene for Utilization in Biomedical Applications

    , M.Sc. Thesis Sharif University of Technology Moazeni, Shima (Author) ; Nemati, Ali (Supervisor) ; Mashayekhan, Shohreh (Co-Supervisor)
    Abstract
    Tissue engineering is a science that tries to create new tissues by using cells, growth factors and appropriate biological materials in order to repair damaged organs and replace parts lost due to various reasons. In this research, the effect of adding mxene sheets on the oxidized alginate-gelatin hydrogel scaffold was investigated. For this purpose, mxene nanosheets were first synthesized by Max phase chemical etching and its synthesis was confirmed by X-ray diffraction spectroscoy, field emission scanning electron microscope, X-ray energy diffraction spectroscopy, Fourier-transform infrared spectroscopy, UV-visible spectroscopy. Then, in order to prepare the scaffolds, different amounts of... 

    Modelling Nonlinear Viscoelastic Behavior of Hydrogels

    , M.Sc. Thesis Sharif University of Technology Beheshti Seresht, Hassan (Author) ; Mohammad Navazi, Hossein (Supervisor) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    In this thesis, the mechanical properties of collagen hydrogels were characterized using Finite Element method and the collagen content effect on the mechanical properties of hydrogels were investigated. Hydrogels samples with different collagen content were assessed which caused diverse mechanical behaviors. Due to the nonlinear behavior of hydrogels, using numerical methods and simulation softwars can be helpful to determine the mechanical properties of these material and save agreat deal of time. Finite Viscoelaticity theory was exploited for a UMAT Subroutine in Abaqus and an special Starin Energy Function was selected to extract the formulations. The agreement between simulation results... 

    Constitutive Modeling for Transient Swelling Behavior of Polymeric Hydrogel with Large Deformations

    , Ph.D. Dissertation Sharif University of Technology Mazaheri, Hashem (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor) ; Baghani, Mostafa (Co-Advisor)
    Abstract
    In this work, the mechanical behavior of smart hydrogels is studied for temperature sensitive and, pH and temperature sensitive ones. First, an equilibrium model is presented for the temperature sensitive hydrogles which is continuous and numerically stable especially in the vicinity of the phase transition temperature. The model results are validated through comparing them with the experimental data available in the literature. The model results are in good agreement with those of experiments especially for hydrogels with high cross-linking density. Then, the model is implemented in a finite element framework by which some homogeneous and inhomogeneous problems are numerically solved.... 

    Design of a Double-Network Hydrogel Scaffold for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Ganjali, Amir Reza (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor)
    Abstract
    Osteoarthritis has always been one of the most common diseases in middle age because it causes severe pain and inflammation in the joints of the body. Cartilage tissue does not have the ability to repair itself. For this reason, fabricating and designing the most efficient, least-expensive, and most convenient methods for the treatment of cartilage defects is always an important issue. Today, there are surgical and injectable methods to relieve pain and initiate the body's natural healing response. But due to the many disadvantages and limitations of these methods, tissue engineering science has turned to modifying these methods or providing new methods. One of these methods is the use of... 

    Design and Synthesis of Self-healing Gels Based on Natural Polysaccharides Using Reversible Bonds and Investigations of their Applications

    , Ph.D. Dissertation Sharif University of Technology Tavakolizadeh, Maryam (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    In recent years, burns and deep wounds that occur in various accidents are important reasons of death in the world. Therefore, the healing process of burn and full thickness of wounds due to late treatment has always been considered by physicians. Thus, the correct treatment and speed of healing of these types of wounds have always been studied. Many synthetic and natural materials have been used to treat wounds, which among them, hydrogels have received a great attention due to creating a moist environment for wounds and absorbing secretions. However, external mechanical stresses may degrade the therapeutic hydrogel. Recently, self-healing coating hydrogels have been designed and developed... 

    Design and Synthesis of Heterogeneous Nanocatalysts Based on Immobilized Metals on Polymeric Substrates and their Applications in Organic Reactions

    , Ph.D. Dissertation Sharif University of Technology Motamedi, Anahita (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Today, catalysts have shown the growing applications in chemical industries especially for drug synthesis. Using immobilized heterogeneous catalysts is a sensible way to benefit from advantages of both heterogeneous and homogeneous catalysts. In this regards, homogeneous catalysts are immobilized on to a solid support through various methods. However, low loading amount of homogenous part and subsequently insufficient catalytic activity are main limitations of immobilized heterogeneous catalysts. For this reason, polymeric supports have been introduced to immobilize metal ions or nanoparticles. These polymeric supports not only possess advantages such as anti-corrosive properties, simple... 

    Design and Fabrication of Self-Healable Double-Network (DN) Hydrogels Based on Reversible and Irreversible Bonds with Tunable Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Aghajani Mongari, Mohammad Ali (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    In order to increase the mechanical properties and resistance of hydrogels to external damage, for their wide application in tissue engineering and medicine, self-healing two-grid hydrogels are used. Two-grid hydrogels with physical lattice have more advantages than two-grid hydrogels with chemical lattice because they have reversible and dynamic bonds, which in addition to increasing mechanical properties, also have self-healing properties. In order to achieve high mechanical properties, gelatin-based double-grid hydrogels with hydrogen bonding and metal-ligand interaction are designed. In the present paper, two-grid hydrogels consisting of gelatin network and other network of sodium... 

    Design and Manufacture of Polymeric Nanocomposite in Order to Control the Production and Migration of Sand in Reservoirs

    , Ph.D. Dissertation Sharif University of Technology Saghandali, Farzin (Author) ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor)
    Abstract
    Sand production from oil reservoirs leads to various problems, such as well productivity reduction, operating equipment corrosion, and increased production costs. Therefore, controlling sand production in unconsolidated reservoirs is crucial for operating companies. Chemical injection into the formation in order to strengthen and reduce sand production is one of the most important methods of sand control. In this study, a hydrogel nanocomposite was designed and its effectiveness in sand control was investigated. Various tests were carried out to define and assess its efficacy, as follows: Morphological tests demonstrated the creation of a dense, homogeneous, and porous structure. Structural... 

    Design and Fabrication of Hydrogel Microcarrier for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Radaei, Payam (Author) ; Mashayekhan, Shohre (Supervisor) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    Microcarriers (MCs) are an attractive technology with various applications in tissue engineering. In this study, chitosan/gelatin MCs were fabricated with blends of different ratio of chitosan/gelatin, by using a setup containing high voltage electrostatic field and syringe pump. Optimization of blend ratio, voltage and syringe pump flow carried out by the “Design expert” software leads to fabrication of MCs with constant diameter while having various elasticity. Mechanical strength and elasticity of MCs were determined. Human umbilical cord mesenchymal stem cells (hUCMSCs) were cultured on MCs dynamically by using mini-rocher in an incubator. Cells adhesion on MCs were successfully shown by... 

    Design and Manufacture of a Scaffold with a Drug Delivery System for a Better Tissue Wound Healing Process

    , M.Sc. Thesis Sharif University of Technology Shaygani, Hossein (Author) ; Shamloo, Amir (Supervisor) ; Aryanpour, Masoud (Supervisor)
    Abstract
    Articular cartilage is devoid of blood vessels, lymphatics, and nerves which gives it a very limited intrinsic healing and repair capabilities. Being under constant harsh biomechanical environment, makes maintaining the health of articular cartilage a vital principle in having healthy joints. Tissue engineering as a method for regeneration of damaged tissue have attracted a lot of attention. Articular cartilage engineered scaffolds act as a macro scale drug delivery system which in addition to having a good mechanical properties similar to that of cartilage tissue, have to provide a highly porous environment for cell migration and proliferation. The aim of this study is to fabricate a drug... 

    Design and Fabrication of a Microfluidic Device for the Formation of Multicellular Aggregates and Using in Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Salehi, Sarah (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh, Siamak (Supervisor)
    Abstract
    Three-dimensional cell culture and forming multicellular aggregates is superior over traditional monolayer approaches due to better mimicking in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform sized multicellular aggregates. Restoring cartilage to healthy state is difficult due to low cell density and hence low regenerative capacity. Currently used platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, when engineering and implanting cell microaggregates in a higher concentration, new cartilage is efficiently... 

    Hydrogel Design and Development for Osteoarthritis Treatment

    , M.Sc. Thesis Sharif University of Technology Mirshafeeyan, Mahshad (Author) ; Yaghmaei, Soheyla (Supervisor) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    "osteoarthritis" is one of the most common joint diseases. This disease has a close relationship with factors such as aging, weight gain, genetics, mechanical pressures, and severe injuries. Although the mechanism of this disease is not fully understood, inflammation is one of the main causes of its exacerbation and progression. controlling inflammation can greatly help in controlling the disease. One of the common treatment methods for osteoarthritis is intra-articular injection of hyaluronic acid and triamcinolone as anti-inflammatory drug. Hyaluronic acid is the main component of synovial fluid, with its viscosupplementation property, prevents bones from rubbing against each other in the... 

    Development of an Integrated Model of Electricity & Methanol Co Production Through Solar Energy and CO2 Capture

    , M.Sc. Thesis Sharif University of Technology Mahmoodi Azar, Karwan (Author) ; Saboohi, Yadollah (Supervisor)
    Abstract
    Emission of CO2 and its diffusion into atmosphere is associated with negative effects on the environmental such as Green House Gases effect. Various techniques of CO2 Capture in energy conversion and processing plant are investigated. A method of CO2 Capture could be based on utilization of solar energy for producing methanol. Basic design of such a system and feasibility analysis of developing that system has been considered on the subject of the present research work. Basic design and commercial feasibility of the system producing methanol through capturing CO2 from exhaust gases of a power plant and hydrogen produced by using solar energy have done such an integrated system. The main... 

    Design and Development of a Compound Skin Scaffold Capable of Drug Delivery for Skin Wound Healing

    , M.Sc. Thesis Sharif University of Technology Bahadoran, Maedeh (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keykhosrow (Supervisor)
    Abstract
    Skin tissue as the first protective barrier to the body is always exposed to the most injuries. The purpose of this project is to design an optimum skin scaffold capable of drug delivery for skin wounds healing. To this end, the skin scaffold has been considered as a combination of a hydrogel structure containing polymer microspheres carrying growth factor. Polyvinyl alcohol and sodium alginate polymers were utilized to make the hydrogel substrate. The hydrogel structure was optimized from the viewpoint of the percentage of gelation, water absorption, porosity, mechanical properties, biodegradability, biocompatibility and considering the volume percent of utilized polymers and the...