Loading...
Search for: lime
0.005 seconds
Total 45 records

    Simple method to synthesize NaxWO3 nanorods and nanobelts

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 30 , 2009 , Pages 13098-13102 ; 19327447 (ISSN) Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    A simple method for synthesis of NaxWO3 nanorods and nanobelts on sputtered tungsten films by using sodium in soda lime substrate as the catalyst was reported for the first time. After thermally post annealing thin films in a temperature range of 600-750 °C in N2 ambient for 80 min, crystalline NaxWO3 nanorods and nanobelts with [001] direction were formed depending on the annealing temperature. Experimental results reveal that the annealing temperature at 700 °C is the optimum temperature for the growth of sodium-doped tungsten oxide nanorods with maximum density on the surface. According to scanning electron microscopic observations, the synthesized nanorods are ∼50 nm in width and a few... 

    Study on mechanical properties of ternary blended concrete containing two different sizes of nano-SiO2

    , Article Composites Part B: Engineering ; Volume 167 , 2019 , Pages 20-24 ; 13598368 (ISSN) Nazerigivi, A ; Najigivi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The aim of this study was to investigate the influences of combination of the two different SiO2 nanoparticles (15 nm and 80 nm) on compressive, flexural and tensile strength of ternary blended concrete. SiO2 nanoparticles with two different sizes of 15 and 80 nm have been used as a partial cement replacement by 0.5, 1.0, 1.5 and 2.0 wt.% in 16 different proportions of mixture followed by curing in lime solution for 7, 28 and 90 days. The results indicate that in all curing ages in lime solution specimens with 2.0% of 15 nm plus 1.5% of 80 nm cement replacement achieved higher mechanical properties. The continuous cement paste with the lowest delicate zones might be due to the fact of quick... 

    The effect of filler type and content on rutting resistance of asphaltic materials

    , Article International Journal of Pavement Research and Technology ; Volume 12, Issue 3 , 2019 , Pages 249-258 ; 19966814 (ISSN) Hamidi, A ; Motamed, A ; Sharif University of Technology
    Springer  2019
    Abstract
    This research evaluates the effect of filler type and content on rutting resistance of asphaltic materials by using laboratory experiments. To examine the effect of filler type, two traditional fillers (Silica sandstone powder and Portland cement) and a new recycled lime powder (Eggshell) were considered. To investigate the effect of filler content, three different filler contents were used. Marshall Stability test was performed on full mixes in order to determine the optimum binder content of the mixtures. Then, the static creep test was performed on Fine Aggregate Matrix (FAM) samples. The permanent strain after 10 minutes of recovery (PS-660) was considered as the indicator of potential... 

    Image-based segmentation and quantification of weak interlayers in rock tunnel face via deep learning

    , Article Automation in Construction ; Volume 120 , 2020 Chen, J ; Zhang, D ; Huang, H ; Shadabfar, M ; Zhou, M ; Yang, T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, an advanced integrated pixel-level method based on the deep convolutional neural network (DCNN) approach named DeepLabv3+ is proposed for weak interlayers detection and quantification. Furthermore, a database containing 32,040 images of limestone, dolomite, loess clay, and red clay is established to verify this method. The proposed model is then trained, validated, and tested via feeding multiple weak interlayers. Moreover, robustness and adaptability of the proposed model are evaluated, and the weak interlayers are extracted. Compared with the fully convolutional network (FCN)-based method and traditional image techniques, the proposed model provides higher accuracy in terms... 

    Effect of cement type on the mechanical behavior of a gravely sand

    , Article Geotechnical and Geological Engineering ; Volume 24, Issue 2 , 2006 , Pages 335-360 ; 09603182 (ISSN) Haeri, S. M ; Hamidi, A ; Hosseini, S. M ; Asghari, E ; Toll, D. G ; Sharif University of Technology
    2006
    Abstract
    The behavior of a cemented gravely sand was studied using triaxial compression tests. Gypsum, Portland cement and lime were used as the cementing agents in sample preparation. The samples with different cement types were compared in equal cement contents. Three cement contents of 1.5%, 3.0% and 4.5% were selected for sample preparation. Drained and undrained triaxial compression tests were conducted in a range of confining pressures from 25 kPa to 500 kPa. Failure modes, shear strength, stress-strain behavior, volume and pore pressure changes were considered. The gypsum cement induced the highest brittleness in soil among three cement types while the Portland cement was found to be the most... 

    Adsorption dynamics of surface-modified silica nanoparticles at solid-liquid interfaces

    , Article Langmuir ; Volume 38, Issue 41 , 2022 , Pages 12421-12431 ; 07437463 (ISSN) Khazaei, M. A ; Bastani, D ; Mohammadi, A ; Kordzadeh, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Understanding the adsorption dynamics of nanoparticles at solid-liquid interfaces is of paramount importance to engineer nanoparticles for a variety of applications. The nanoparticle surface chemistry is significant for controlling the adsorption dynamics. This study aimed to experimentally examine the adsorption of surface-modified round-shaped silica nanoparticles (with an average diameter of 12 nm), grafted with hydrophobic (propyl chains) and/or hydrophilic (polyethylene glycol chains) agents, at an aqueous solution-silica interface with spherical soda-lime glass beads (diameter of 3 mm) being used as adsorbents. While no measurable adsorption was observed for solely hydrophobic or... 

    The behavior of a limy cemented gravely sand under static loading-case study of Tehran alluvium

    , Article Electronic Journal of Geotechnical Engineering ; Volume 13 H , 2008 ; 10893032 (ISSN) Haeri, S. M ; Seiphoori, A ; Rahmati, A ; Sharif University of Technology
    2008
    Abstract
    The majority of the city of Tehran, Iran has been developed on cemented coarse-grained alluvium. In order to understand the mechanical behavior of this soil, a series of triaxial compression tests (CD, CU) were performed on uncemented and artificially cemented samples. Hydrated lime was used as the cementation agent for sample preparation to model the Tehran cemented deposit. The tests were performed on artificially cemented samples after an appropriate curing time. The effect of confining pressure, cement content and fine content is investigated in this research. The tests results show that peak shear strength is followed by strain softening for all cemented samples. Shear strength... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Biodiesel production using CaO/γ-Al2O3 catalyst synthesized by sol-gel method

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 9 , July , 2015 , Pages 1531-1538 ; 00084034 (ISSN) Moradi, G ; Mohadesi, M ; Rezaei, R ; Moradi, R ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    In this study, 40% CaO/γ-Al2O3 catalyst was used for biodiesel production from corn oil. A transesterification reaction was done for 5h at a temperature of 65°C in the presence of corn oil, methanol (methanol to oil molar ratio of 12:1), and CaO/γ-Al2O3 catalyst (0.06g/g (6wt%)). Catalyst used in this study was synthesized using the sol-gel method. In this method, two parameters of gelation temperature and nitric acid concentration were used as variables in the catalyst synthesis step, and experiments were designed using central composite design (CCD). The results indicate that the optimal point is achieved at a gelation temperature of 70°C and... 

    Thermodynamic evaluation of adsorption of zinc complex and ZnO nano-layer prepared by tscd method based on langmuir adsorption model

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 22, Issue 2 , 2009 , Pages 179-184 ; 1728-144X (ISSN) Vaezi, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2009
    Abstract
    Zinc oxide thin films were deposited on soda-lime glass substrates from an aqueous zinc- containing complex by two-stage chemical deposition (TSCD) method. Longmuir adsorption model showed that the adsorption of atoms on the surface of the substrate was typically physical. The relation between the fractional coverage, θ, with the equilibrium constant of the adsorption reaction was nonlinear indicating that the adsorption was non-ideal. The percentage of porosity, 1-θ, of the thin layer was determined as a function of Zn 2+ concentration of the solution. By application of XRD technique, it was shown that pure crystalline ZnO of controllable thickness could be deposited by TSCD method on the... 

    Integrated image processing and computational techniques to characterize formation damage

    , Article SPE International Conference and Exhibition on Formation Damage Control 2018, 7 February 2018 through 9 February 2018 ; Volume 2018-February , 2018 Ezeakacha, C. P ; Rabbani, A ; Salehi, S ; Ghalambor, A ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2018
    Abstract
    Filtrate and solid invasion from drilling fluids are two key sources of formation damage, and can result in formation permeability impairment. Typically, spurt invasion of mud solids causes the evolution of an external mud cake which tends to reduce further solids and filtrate influx. However, uncontrolled spurt and filtrate invasion are detrimental because they reduce the permeability of the formation. Mud composition, formation rock's permeability and porosity, and temperature can influence both spurt and filtrate invasion. The sizes of mud solids relative to the average pore size of a rock are also important in predicting the extent of mud invasion and permeability impairment. In this... 

    Mechanism of nanostructured fluorapatite formation from CaO, CaF2 and P2O5 precursors by mechanochemical synthesis

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 43, Issue 3-4 , 2018 , Pages 201-210 ; 14686783 (ISSN) Nikonam Mofrad,, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Science Reviews 2000 Ltd  2018
    Abstract
    We determined the mechanism of mechanochemical synthesis of fluorapatite from CaO, CaF2 and P2O5 by characterisation of the intermediate compounds. We used atomic absorption spectroscopy, X-ray diffraction, field emission scanning electron microscopy, FTIR spectroscopy and transmission electron microscopy to find the transitional compounds. Investigation of the binary and ternary powder mixtures revealed the appearance of H3PO4, Ca(OH)2, Ca2P2O7 and CaCO3 as the intermediate compounds. At early stages of the milling, conversions of P2O5 to H3PO4 and CaO to Ca(OH)2 occurred in the wet atmosphere. Later, a combination of Ca(OH)2 and H3PO4 formed Ca2P2O7 while the unreacted CaO was converted to... 

    Experimental study of dynamic imbibition during water flooding of naturally fractured reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 174 , 2019 , Pages 1-13 ; 09204105 (ISSN) Harimi, B ; Masihi, M ; Mirzaei Paiaman, A ; Hamidpour, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Capillary imbibition is an important recovery mechanism in naturally fractured reservoirs when water-filled fractures surround water-wet matrix blocks. A large amount of studies of imbibition process is simply total or partial immersion of nonwetting phase saturated rock in aqueous wetting phase. However, water advance in fractures during water flooding or water encroachment from an active aquifer introduces time dependent boundary conditions where invariant exposure of rock surface to water is not representative. In this work, a laboratory simulated matrix-fracture system was used to investigate different aspects of imbibition in the presence of fracture fluid flow (namely dynamic... 

    Characterization and calcination behavior of a low-grade manganese ore

    , Article Materials Today Communications ; Volume 25 , 2020 Cheraghi, A ; Becker, H ; Eftekhari, H ; Yoozbashizadeh, H ; Safarian, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Characterization and calcination behavior of a low-grade manganese ore, as a part of Mn ferroalloys production, was studied by XRF, ex-situ XRD, in-situ XRD, and SEM-EDS techniques. Calcination experiments were carried out at and up to 900 °C (1173 K) in air and argon atmospheres. The samples were in particles and powder forms. The results indicated that both quartz and calcite phases in the ore exhibit a bimodal spatial distribution; as relatively large regions and finely distributed in the Mn- and Fe-containing phases. By Rietveld analysis of the in-situ XRD data, the reactions occurring upon heating during the calcination process were deduced. Thermal decomposition and reactive diffusion... 

    Impact of rock mineralogy on reservoir souring: A geochemical modeling study

    , Article Chemical Geology ; Volume 555 , November , 2020 Li, H ; Zhang, L ; Liu, L ; Shabani, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    The petroleum industry suffers from reservoir souring phenomena, which has negative impacts on production facilities, health, and environment. Injection of incompatible water into the reservoir (waterflooding), which is considered as an enhanced oil recovery (EOR) method, is one of the most common causes of reservoir souring. In general, injected brine, especially seawater, contains high amounts of sulfate ion (SO42−). A high concentration of sulfate in the presence of sulfate-reducing bacteria (SRB) leads to the microbial reservoir souring. During this phenomenon, sulfide, specifically hydrogen sulfide gas (H2S) appears in the producing fluid of the reservoir. In this paper, a coupled... 

    Pore scale visualization of fluid-fluid and rock-fluid interactions during low-salinity waterflooding in carbonate and sandstone representing micromodels

    , Article Journal of Petroleum Science and Engineering ; 2020 Siadatifar, S. E ; Fatemi, M ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Low Salinity Waterflooding (LSWF) has become a popular tertiary injection EOR method recently. Both fluid-fluid and fluid-rock interactions are suggested as the contributing mechanisms on the effectiveness of LSWF. Considering the contradictory remarks in the literature, the dominating mechanisms and necessary conditions for Low Salinity Effect (LSE) varies for different crude oil-brine-rock (CBR) systems. The aim of the present study is to investigate LSE for an oil field in the Middle East that is composed of separate sandstone and limestone layers. Contact angles and Interfacial Tension (IFT) are measured to have more insight on the CBR under investigation. Visual experiments were... 

    Mesoscopic theoretical modeling and experimental study of rheological behavior of water-based drilling fluid containing associative synthetic polymer, bentonite, and limestone

    , Article Journal of Molecular Liquids ; 2021 ; 01677322 (ISSN) Kariman Moghaddam, A ; Davoodi, S ; Ramazani S.A., A ; Minaev, K.M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Employing an effective rheological model for the flow of drilling fluid that can accurately predict changing conditions is of significant importance in drilling fluid optimization. Traditional generalized Newtonian models cannot predict the time change condition, viscoelastic behavior, role of each component, or microstructural behaviors within the fluid. Consequently, the present research aims to develop constitutive equations in the framework of generalized bracket formalisms and the extra tensor concept that connect the microscopic and macroscopic properties and can overcome the aforementioned problems of traditional rheological models. The developed model is applicable for drilling fluid... 

    Dynamic analysis of mud loss during overbalanced drilling operation: An experimental study

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Shad, S ; Salmanpour, S ; Zamani, H ; Zivar, D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Mud filtration happens during an overbalanced drilling operation that causes mud invasion into pores and fractures. The productivity of a formation is significantly affected by the invasion of the mud into the near-wellbore area during the mud loss process. A considerable number of studies have evaluated mud filtration statically; however, a few studies have considered the dynamic behavior of a mud loss process during overbalanced drilling, which results in the inadequate prediction of the mud loss volume and inflicted damage to the formation. In this study, a near-wellbore simulation system (NeWSS) was designed to evaluate the dynamic mud loss behavior using dimensionless parameters and... 

    Pore scale visualization of fluid-fluid and rock-fluid interactions during low-salinity waterflooding in carbonate and sandstone representing micromodels

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Siadatifar, S. E ; Fatemi, M ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low Salinity Waterflooding (LSWF) has become a popular tertiary injection EOR method recently. Both fluid-fluid and fluid-rock interactions are suggested as the contributing mechanisms on the effectiveness of LSWF. Considering the contradictory remarks in the literature, the dominating mechanisms and necessary conditions for Low Salinity Effect (LSE) varies for different crude oil-brine-rock (CBR) systems. The aim of the present study is to investigate LSE for an oil field in the Middle East that is composed of separate sandstone and limestone layers. Contact angles and Interfacial Tension (IFT) are measured to have more insight on the CBR under investigation. Visual experiments were... 

    Mesoscopic theoretical modeling and experimental study of rheological behavior of water-based drilling fluid containing associative synthetic polymer, bentonite, and limestone

    , Article Journal of Molecular Liquids ; Volume 347 , 2022 ; 01677322 (ISSN) Kariman Moghaddam, A ; Davoodi, S ; Ramazani S. A., A ; Minaev, K. M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Employing an effective rheological model for the flow of drilling fluid that can accurately predict changing conditions is of significant importance in drilling fluid optimization. Traditional generalized Newtonian models cannot predict the time change condition, viscoelastic behavior, role of each component, or microstructural behaviors within the fluid. Consequently, the present research aims to develop constitutive equations in the framework of generalized bracket formalisms and the extra tensor concept that connect the microscopic and macroscopic properties and can overcome the aforementioned problems of traditional rheological models. The developed model is applicable for drilling fluid...