Loading...
Search for: low-temperatures
0.009 seconds
Total 142 records

    Design and Optimization of Helium Recovery Process from Natural Gas

    , M.Sc. Thesis Sharif University of Technology Azimi, Sajad (Author) ; Afshin, Hossein (Supervisor) ; Farhanieh, Bijan (Co-Supervisor)
    Abstract
    Helium is a valuable substance that is widely used in industry and medicine because of its unique properties. Due to the increasing demand for helium in the global market, several helium extraction units have been launched in the world in recent years; Nevertheless, there is still a significant gap between projected global helium production capacity and demand. Today, natural gas is known as the main source of helium on the earth. The method of industrial extraction of helium from natural gas is cryogenic. Due to the low temperature of this process, relatively high power consumption is used to extract helium from natural gas. Therefore, the optimization of this process is of great... 

    Numerical and Experimental Analysis of Homogeneous Charge Compression Ignition with Normal Paraffins, Branched-chain Paraffins and Aromatics Combined Fuels

    , Ph.D. Dissertation Sharif University of Technology Reyhanian, Masoud (Author) ; Hosseini, Vahid (Supervisor) ; Mozafari, Ali Asghar (Supervisor)
    Abstract
    The purpose of this dissertation is to experimentally and numerically investigate the effect of molecular structure, composition, and physical and chemical properties of fuel on HCCI combustion. A well-equipped laboratory was set up to perform the required tests, capable of performing HCCI tests with different fuels. All tests used a single-cylinder diesel engine modified to operate in HCCI mode. Also, for numerical simulation, a chemical kinetic multi-zone model was developed to predict HCCI combustion behavior with appropriate accuracy. To investigate the effect of fuel chemical structure on HCCI combustion, three fuels, toluene, iso-octane and normal heptane, with entirely different... 

    SnO2 Layer Curing as a Low Temperature Electron Transporting Layer in Perovskite Solar Cell

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Perovskite solar cells have attracted much attention due to their high photovoltaic performance. The excellent performance of perovskite solar cells is attributed to the superior electrical properties of each layer, including the electron-transporting layer, the light-absorbing layer, and the hole-transporting layer. The electron transport layer plays a key role in influencing the photovoltaic parameters of perovskite solar cells. SnO2 is considered as an ideal electron transport layer for perovskite solar cells due to its high carrier mobility, deep conduction band, suitable band gap and low temperature processing. Surface modification of SnO2 has significantly improved device performance... 

    Experimental and Numerical Investigations of Reactivity Controlled Compression Ignition (RCCI)Combustion Fueled by Diesel and Natural Gas

    , Ph.D. Dissertation Sharif University of Technology Zarrinkolah, Mohammad Taghi (Author) ; Hosseini, Vahid (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    In this thesis, reactivity controlled compression ignition (RCCI) combustion fueled by diesel and natural gas is experimentally and numerically investigated. Natural gas as a fuel with low reactivity is injected into the intake manifold, and diesel as a fuel with high reactivity is injected directly into the combustion chamber. One of the main goals of this thesis is to experimentally examine the effect of important parameters on combustion phasing control, operational range extension, and pollutants. Natural gas is one of the important sources of energy in Iran and the world. Using natural gas in internal combustion engines can cause methane to slip into the atmosphere and intensify the... 

    Experimental Study of the Conversion of Heat to Electricity Using Movement of a Magnet Inside an Oscillating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Moradi, Sepehr (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Heat sources with temperatures less than 100 °C are available in various processes in the form of waste heat and from renewable sources such as solar energy. One of the methods of gaining benefit from these ubiquitous and abundant heat sources is using thermal harvesters that convert low-temperature heat into electrical energy without the need for the power grid. Portable harvesters can be a reliable and low-cost option for providing stable energy for low-power electronic devices such as wireless sensors. Many studies have been conducted at the global level to design and develop efficient low-temperature heat harvesting mechanisms. However, each of them is associated with fundamental... 

    Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide

    , Article Carbon ; Volume 50, Issue 8 , 2012 , Pages 3015-3025 ; 00086223 (ISSN) Akhavan, O ; Kalaee, M ; Alavi, Z. S ; Ghiasi, S. M. A ; Esfandiar, A ; Sharif University of Technology
    2012
    Abstract
    An easy method for green and low-temperature (40 °C) reduction of graphene oxide (GO) by increasing the antioxidant activity of green tea polyphenols (GTPs) in the presence of iron was developed. The reduction level (obtained by X-ray photoelectron spectroscopy) and electrical conductivity (obtained by current-voltage measurement) of the GO sheets reduced by GTPs in the presence of iron were comparable to those of hydrazine-reduced GO and much better than those of the GO reduced by only GTPs (in the absence of iron) at reduction temperatures of 40-80 °C. Raman spectroscopy indicated that application of GTPs in the presence of iron, in contrast to hydrazine, resulted in better recovering of... 

    Molecular dynamics simulation of nano channel as nanopumps

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011, Edmonton, AB ; Volume 2 , 2011 , Pages 223-227 ; 9780791844649 (ISBN) Darbandi, M ; Abbasi, H. R ; Khaledi Alidusti, R ; Sabouri, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    We use three-dimensional molecular dynamics simulation to investigate the driven flow between two parallel plates separated by argon atoms. Our simulations show that fluids in such channels can be continuously driven. Difference in surface wettability can cause a difference in fluid density along the nano channel. To control the nanochannel temperature walls, we use the thermal wall idea, which models the walls using atoms connected to their original positions by enforcing linear spring forces. In this study, we propose a nanochannel system in which, half of the channel has a low surface wettability, while the other half has a higher surface wettability and that the middle part of channel... 

    Graphene-based antidots for thermoelectric applications

    , Article Journal of the Electrochemical Society ; Volume 158, Issue 12 , 2011 , Pages K213-K216 ; 00134651 (ISSN) Karamitaheri, H ; Pourfath, M ; Pazoki, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    The low temperature thermoelectric properties of hydrogen-passivated graphene-based antidot lattices are theoretically investigated. Calculations are performed using density functional theory in conjunction with the Landauer formula to obtain the ballistic transport coefficients. Antidot lattices with hexagonal, triangular and rectangular antidot shapes are studied. Methods to reduce the thermal conductance and to increase the thermoelectric power factor of such structures are studied. Our results indicate that triangular antidot lattices have the smallest thermal conductance due to longer boundaries, the smallest distance between the neighboring antidots, and the armchair edges. This... 

    Cold briquetting of sponge iron (CBSI): Parameters and effectiveness

    , Article Ironmaking and Steelmaking ; Volume 38, Issue 6 , May , 2011 , Pages 442-446 ; 03019233 (ISSN) Tavakoli, M. R ; Askari, M ; Farahani, M ; Shahahmadi, A ; Sharif University of Technology
    2011
    Abstract
    The oxidation of sponge iron products and its destructive effects on iron content as well as other properties have been considered by ferrous technologists for a long time. In this investigation, a unique new low temperature method of preventing and/or retarding the oxidation of direct reduced iron is introduced. Experimental results from laboratory and pilot plant tests show the success of the method which has been named cold briquetting of sponge iron. The optimum condition for briquetting is achieved at 80 kN (Lcm)-1, 6% binder, 10% sponge iron fines and 4% anthracite. While hot briquetted iron has become a successful method for the new generation of iron reduction plants, cold... 

    Plasma effects on anti-felting properties of wool fabrics

    , Article Surface and Coatings Technology ; Volume 205, Issue SUPPL. 1 , December , 2010 , Pages S349-S354 ; 02578972 (ISSN) Shahidi, S ; Rashidi, A ; Ghoranneviss, M ; Anvari, A ; Wiener, J ; Sharif University of Technology
    2010
    Abstract
    Low temperature plasma (LTP) is nowadays an intensively investigated superficial treatment of wool. In this work we have investigated the effect of LTP on wool fabric under different conditions. The effect of the position of samples inside the reactor and the kind of gases used as discharge medium has been also investigated. The results show that not only the topography of the surface is modified but also the chemical composition of the surface. It is shown that the hydrophilicity of the samples and also their shrink resistance and anti-felting behavior have improved significantly under LTP treatment. The results show that the shrinkage of 30.1% for untreated samples has reduced to about... 

    Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma

    , Article Cellulose ; Volume 17, Issue 3 , 2010 , Pages 627-634 ; 09690239 (ISSN) Shahidi, S ; Rashidi, A ; Ghoranneviss, M ; Anvari, A ; Rahimi, M. K ; Bameni Moghaddam, M ; Wiener, J ; Sharif University of Technology
    2010
    Abstract
    In this work, the silver particle absorption and antibacterial activity of cotton fabric when modified by low temperature plasma were investigated. The modification consisted of plasma pre-functionalization followed by one-step wet treatment with silver nitrate solution. Oxygen and nitrogen were used as the working gases in the system, and the results were compared. The results showed that nitrogen plasma-treated samples can absorb more silver particles than oxygen-treated samples, and thus the antibacterial activity of the samples in this case, which was analyzed by the counting bacteria test, was increased considerably  

    Sintering of nanostructured WC-10Co/316L stainless-steel composite parts made by assembling of the PIM parts

    , Article World Powder Metallurgy Congress and Exhibition, World PM 2010, Florence, 10 October 2010 through 14 October 2010 ; Volume 4 , 2010 ; 9781899072194 (ISBN) Simchi, A ; Petzoldt, F ; Hartwig, T ; Veltl, G ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2010
    Abstract
    This paper reports co-sintering response of nanostructured WC-Co/316L stainless steel composite produced by assembling of powder injection molding (PIM) parts. A significant mismatch sintering shrinkage (>4%) was observed in the temperature range of 1080-1350 °C. The reaction between WC and Fe at the contact area resulted in the diffusion of C and Co into the iron lattice and eventually formation of a low-temperature liquid phase that in fact affects the shape control of the PIM parts during sintering. In order to make the co-sintering feasible, a special sintering cycle was developed. The reaction between the cemented carbide and stainless steel was also retarded by developing a special... 

    Investigating thermal performance of a partly sintered-wick heat pipe filled with different working fluids

    , Article Scientia Iranica ; Volume 23, Issue 6 , 2016 , Pages 2616-2625 ; 10263098 (ISSN) Khalili, M ; Shaii, M. B ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Heat pipes are important cooling devices that are widely used to transfer high heat loads with low temperature differences. In this paper, thermal performance of a novel type of sintered-wick heat pipe, namely, partly sintered-wick heat pipe, was investigated. The heat pipe was filled with degassed water and acetone, as working uids, and effects of filling ratio, orientation, and heat inputs were tested. Moreover, conditions at which dryout occurred were presented. The results showed that the best filling ratio for both working uids is about 20%. The heat pipe filled with water has better thermal performance than that filled with acetone; thus, the thermal resistances of the 20% water-filled... 

    Interfacial microstructure and properties of SiC/SiC joint brazed with Ag-Cu-Ti alloys

    , Article 11th International Conference and Exhibition of the European Ceramic Society 2009, 21 June 2009 through 25 June 2009 ; Volume 1 , 2009 , Pages 212-214 ; 9781617823848 (ISBN) Nemati, A ; Kokabi, A. H ; Daryani, A. G ; Sharif University of Technology
    Abstract
    SiC Ceramic was joined to itself using active brazing alloys, like Ti in shape of sheet filler of Ag-cu and Ti-6AI-4V. This operation occurred in an inert gas furnace. Interfacial microstructure was studied with scanning electron microscopy and X-Ray diffraction. Variation of Electrical Specific Resistance measured by 4 pin astute multimeter and strength of these joints was measured by fracture shear loading. This joint happened at 900°C and upper temperature with 90 minutes and upper time. Electrical specific resistance goes up with the joint in low temperature and time but this variation is very little. The microstructure showed excellent bonding at the interfaces. The data showed also... 

    Hot corrosion behavior and near-surface microstructure of a “low-temperature high-activity Cr-aluminide” coating on inconel 738LC exposed to Na2SO4, Na2SO4 + V2O5 and Na2SO4 + V2O5 + NaCl at 900 °C

    , Article Corrosion Science ; Volume 128 , 2017 , Pages 42-53 ; 0010938X (ISSN) Salehi Doolabi, M ; Ghasemi, B ; Sadrnezhaad, S. K ; Habibollahzadeh, A ; Jafarzadeh, K ; Sharif University of Technology
    Abstract
    Hot corrosion is a serious problem in gas turbines due to poor quality fuels which contain Na, V, S and Cl. To resolve the problem, Cr-aluminide was coated on IN-738LC superalloy with a two steps pack cementation process. Oxidation behavior and near-surface microstructure of the coating showed consecutive increase in destruction by exposition to Na2SO4, 75Na2SO4 + 25 V2O5 and 70Na2SO4 + 25 V2O5 + 5NaCl (wt.%). Kinetic studies indicated parabolic corrosion rate in salt-less samples due to diffusion. Similar expression for salt-covered samples was assessed for oxide dissolution. Plate-like, broken-plate-like and cauliflower-like morphologies attributed to the corrosion products were observed... 

    Phase diagram of the frustrated J 1-J 2 transverse field Ising model on the square lattice

    , Article Journal of Physics: Conference Series ; Volume 969, Issue 1 , 19 April , 2018 ; 17426588 (ISSN) Sadrzadeh, M ; Langari, A ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    We study the zero-Temperature phase diagram of transverse field Ising model on the J 1-J 2 square lattice. In zero magnetic field, the model has a classical Néel phase for J 2/J 1 < 0.5 and an antiferromagnetic collinear phase for J 2/J 1 > 0.5. We incorporate harmonic fluctuations by using linear spin wave theory (LSWT) with single spin flip excitations above a magnetic order background and obtain the phase diagram of the model in this approximation. We find that harmonic quantum fluctuations of LSWT fail to lift the large degeneracy at J 2/J 1 = 0.5 and exhibit some inconsistent regions on the phase diagram. However, we show that anharmonic fluctuations of cluster operator approach (COA)... 

    Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: a photodegradation kinetic model

    , Article Applied Surface Science ; Volume 435 , 2018 , Pages 108-116 ; 01694332 (ISSN) Ebrahimi, M ; Yousefzadeh, S ; Samadi, M ; Dong, C ; Zhang, J ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher... 

    Exergetic and thermoeconomic analysis of a trigeneration system producing electricity, hot water, and fresh water driven by low-temperature geothermal sources

    , Article Energy Conversion and Management ; Volume 157 , 2018 , Pages 266-276 ; 01968904 (ISSN) Behnam, P ; Arefi, A. R ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Performance of a small-scale trigeneration system driven by low-temperature geothermal sources for producing fresh water, heating (hot water) and electricity is investigated from thermodynamic and economic standpoints. This system, utilizing a single stage absorption heat transformer leads to an increase in heat source temperature to be used in single stage evaporation desalination process and also providing water heating. Furthermore, an organic Rankine cycle is used for electric power generation. The developed model is validated with available data and effects of decision variables namely geothermal source, absorber and condenser temperatures on energy and exergy efficiencies of the... 

    Long-term stability of dye-sensitized solar cells using a facile gel polymer electrolyte

    , Article New Journal of Chemistry ; Volume 42, Issue 16 , 2018 , Pages 13256-13262 ; 11440546 (ISSN) Ma'alinia, A ; Asgari Moghaddam, H ; Nouri, E ; Mohammadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Herein, we demonstrate a facile low temperature approach to prepare a gel polymer electrolyte (GPE) based on the triiodide/iodide redox couple in a quasi-solid-state dye-sensitized solar cell (DSSC). Only one polymeric agent (i.e., hydroxypropyl cellulose (HPC)) is used for the preparation of a non-volatile GPE system for the standard liquid electrolyte containing 1-methyl-3-propylimidazolium iodide (MPII). The prepared GPE completely penetrates into a TiO2 photoanode at room temperature due to the uniform distribution of Ti, Ru and I elements in the cross-section of the electrode, forming an interpenetrating GPE/TiO2 network to access all dye molecules. The GPE with the optimum HPC : MPII... 

    Finite-temperature topological order in two-dimensional topological color codes

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 80, Issue 1 , 2009 ; 10502947 (ISSN) Kargarian, M ; Sharif University of Technology
    2009
    Abstract
    In this work the topological order at finite temperature in two-dimensional color code is studied. The topological entropy is used to measure the behavior of the topological order. Topological order in color code arises from the colored string-net structures. By imposing the hard constrained limit the exact solution of the entanglement entropy becomes possible. For finite size systems, by raising the temperature, one type of string-net structure is thermalized and the associative topological entropy vanishes. In the thermodynamic limit the underlying topological order is fragile even at very low temperatures. Taking first the thermodynamic limit and then the zero-temperature limit and vice...