Loading...
Search for: magnetos
0.006 seconds
Total 50 records

    Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 21 , 2014 , p. 3306-3314 Akhavan, O ; Meidanchi, A ; Ghaderi, E ; Khoei, S ; Sharif University of Technology
    Abstract
    A magneto-photothermal therapy for cancer (in vitro photothermal therapy of prostate cancer cells and in vivo photothermal therapy of human glioblastoma tumors in the presence of an external magnetic field) was developed using superparamagnetic zinc ferrite spinel (ZnFe2O4)-reduced graphene oxide (rGO) nanostructures (with various graphene contents). In vitro application of a low concentration (10 μg mL-1) of the ZnFe 2O4-rGO (20 wt%) nanostructures under a short time period (∼1 min) of near-infrared (NIR) irradiation (with a laser power of 7.5 W cm-2) resulted in an excellent destruction of the prostate cancer cells, in the presence of a magnetic field (∼1 Tesla) used for localizing the... 

    Prosthetic knee using of hybrid concept of magnetorheological brake with a T-shaped drum

    , Article 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2 August 2015 through 5 August 2015 ; Aug , 2015 , Pages 721-726 ; 9781479970964 (ISBN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via implementing of Newton's equation of... 

    Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid

    , Article Mechanics Research Communications ; Volume 77 , 2016 , Pages 50-59 ; 00936413 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In recent years, structures integrated with magnetorheological (MR) fluid have been considered for their tunable dynamic characteristics. Shear modulus of MR layer in composite structure is dramatically lower than the elastic layers, leading to high shear deformation inside the MR layer, thus classical theories are not accurate enough to predict the dynamic behavior of such structures. In present study a layerwise displacement theory has been utilized to predict a more accurate deformation for MR-composite beam and equation of motions derived using finite element model (FEM). ASTM E756-98 was employed to evaluate the complex shear modulus of MR fluid. By experimental test a practical... 

    Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force

    , Article Acta Mechanica ; Volume 231, Issue 9 , 2020 , Pages 3715-3727 Rokn Abadi, M ; Yousefi, M ; Haddadpour, H ; Sadeghmanesh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    In the present study, the effect of using magnetorheological elastomer materials and a magnetic field on the dynamic stability of a sandwich beam under a follower force has been investigated for various boundary conditions. The considered sandwich beam consists of a magnetorheological elastomer core constrained by elastic layers. The structural governing equations are derived using Hamilton’s principle and solved by the finite element method. The validity of the result is examined by comparison with those in the literature. The effects of variation in the parameters such as magnetic field intensity and the thickness of the layers on the stability of the sandwich beam are studied. Finally,... 

    Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

    , Article Journal of Intelligent Material Systems and Structures ; Volume 32, Issue 5 , 2021 , Pages 568-583 ; 1045389X (ISSN) Sayyaadi, H ; Mehrabi, M ; Hoviattalab, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at... 

    Semi active vibration control of a passenger car using magnetorheological shock absorber

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Istanbul, 12 July 2010 through 14 July 2010 ; Volume 3 , 2010 , Pages 21-27 ; 9780791849170 (ISBN) Fellah Jahromi, A ; Zabihollah, A ; Sharif University of Technology
    2010
    Abstract
    A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a mass-spring model with an eight-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is designed to reduce the amplitude of automotive vibration caused by the alteration of road profile. The control mechanism is designed based on the optimal control algorithm, Linear Quadratic Regulator (LQR). In this system, the damping coefficient of the shock absorber changes actively trough inducing magnetic field. It is observed that utilizing the present control algorithm may significantly reduce... 

    Dynamic behavior of electric field in the microrings in the presence of Kerr and two-photon absorption

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 7 April 2008 through 10 April 2008, Strasbourg ; Volume 6996 , 2008 ; 0277786X (ISSN) ; 9780819471949 (ISBN) Keyvaninia, S ; Karvar, M ; Bahrampour, A ; Sharif University of Technology
    2008
    Abstract
    This paper a simple semi-analytical model for calculation of the time evolution and spatial variation of the electric field in microring resonators in the presence of The Kerr effect and two-photon absorption (TPA) is presented. The theoretical analysis is based on the delayed feedback model, which is well known in microring theory. The model is applied to the Chalcogenide glass and AlGaAs microrings to study the Kerr and TPA effects on the spatial and temporal variation of electric field respectively across the microring. The effects of microring parameters and input signal shapes on the transient behavior are taken into consideration. It is shown that, the results are in good agreement... 

    Study on Motion of Electrical Conductor Fluid Plug Actuated Electromagnetically in Microsystems

    , Ph.D. Dissertation Sharif University of Technology Karmozdi, Mohsen (Author) ; Shafii, Mohmmad Behshad (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Micropumps are regarded as one of the devices used in microsystems, which are responsible for pumping working fluid. The Mercury Magneto Reciprocating (MMR) micropump, which has been introduced for less than a decade, is an innovative kind of micropumps which the pumping agent includes three liquid metal droplets (LMD) placed inside lateral chambers and reciprocated by the electromagnetic force inside the chambers. The working fluid located inside the main channel is pumped through due to the movement of these three LMDs. The equations governing this micropump are complex and their numerical solution is a time-consuming process, due to electromagnetic, hydrodynamic, and unsteady effects. The... 

    Improvement of the in-Memory Automata Processor Accelerators using Emerging Memories

    , M.Sc. Thesis Sharif University of Technology Yazdanpanah, Ali (Author) ; Hessabi, Shahin (Supervisor)
    Abstract
    Non-deterministic finite automata (NFA) are an elementary type of Turing machines with very high processing power. NFA processors provide parallelism at the data and task level because they can be in several different output states in one clock cycle. Implementing such machines with memory is a good strategy because if we consider each of the memory columns as a state, by selecting a row of the memory, we can activate several states at the same time, which is an implementation of NFA. NFA-based automata processors were first introduced by Micron and were very powerful for issues such as pattern matching, DNA sequencing, or regular expressions and, in general, for machine learning topics.... 

    Scattering of SH-Waves by a Cylindrical Multi Inhomogeneity Embedded in a Piezo-Electromagnetic Medium Using an Analytical Innovative Micromechanical Approach

    , Ph.D. Dissertation Sharif University of Technology Ordookhani, Ali (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    This work examines the problem of the fully coupled magneto-electro-elastic (MEE) scattering of SH-waves incident upon a heterogeneous MEE scatterer which is embedded in an unbounded medium. The scatterer consists of a circular core and a circular encapsulator with eccentricity. All three regions: the core, encapsulator, and the surrounding matrix have distinct MEE properties and fully coupled constitutive relations. The generated coupled MEE fields coexist simultaneously in all these regions without resort to any simplifying assumptions. The precise description of the multifunctionality involves the solution of three fully coupled partial differential equations in three different regions.... 

    Tuning of random lasers by means of external magnetic fields based on the Voigt effect

    , Article Optics and Laser Technology ; Volume 47 , April , 2013 , Pages 121-126 ; 00303992 (ISSN) Ghasempour Ardakani, A ; Mahdavi, S. M ; Bahrampour, A. R ; Sharif University of Technology
    2013
    Abstract
    It has been proposed that emission spectrum of random lasers with magnetically active semiconductor constituents can be made tunable by external magnetic fields. By employing the FDTD method, the spectral intensity and spatial distribution of electric field are calculated in the presence of an external magnetic field. It is numerically shown that due to the magneto-optical Voigt effect, the emission spectrum of a semiconductor-based random laser can be made tunable by adjusting the external magnetic field. The effect of magnetic field on the localization length of the laser modes is investigated. It is also shown that the spatial distribution of electric field exhibited remarkable... 

    Semi-active vibration control of a marine structure with magnetorheological (MR) dampers utilizing LQR method

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 5 , 2010 , Pages 651-659 ; 9780791844137 (ISBN) Daneshfard, M. S ; Zabihollah, A ; Sharif University of Technology
    Abstract
    The developing of technology has discovered new materials which have been applied to improve the performance of structures. The researchers have recently increased the attention in controllable fluids and its applications. Magnetorheological (MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, robustness and safe manner operation in case of fail have made them attractive devices to passive, semi-active and active control in mechatronic, civil, aerospace and automotive applications. The characteristics of the MR damper change when the rheological fluid is... 

    Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow

    , Article Composite Structures ; Volume 143 , 2016 , Pages 93-102 ; 02638223 (ISSN) Asgari, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Supersonic aeroelastic instability of a three-layered sandwich beam of rectangular cross section with an adaptive magneto-rheological fluid (MRF) core layer is investigated. The panel is excited by an airflow along it's longitudinal direction. The problem formulation is based on classical beam theory for the face layers, magnetic field dependent complex modulus approach for viscoelastic material model and the linear first-order piston theory for aerodynamic pressure. The classical Hamilton's principle and the assumed mode method are used to set up the equations of motion. The validity of the derived formulation is confirmed through comparison with the available results in the literature. The... 

    A SPH solver for simulating paramagnetic solid fluid interaction in the presence of an external magnetic field

    , Article Applied Mathematical Modelling ; Volume 40, Issue 7-8 , 2016 , Pages 4341-4369 ; 0307904X (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    The Smoothed Particle Hydrodynamics (SPH) method is extended to solve magnetostatic problems involving magnetically interacting solid bodies. In order to deal with the jump in the magnetic permeability at a fluid-solid interface, a consistent SPH scheme is utilized and a modified formulation is proposed to calculate the magnetic force density along the interface. The results of the magnetostatic solver are verified against those of the finite element method. The governing fluid flow equations are discretized using the same SPH scheme, developing an efficient method for simulating the motion of paramagnetic solid bodies in a fluid flow. The proposed algorithm is applied to a benchmark problem... 

    Attenuation of random vibration in plates

    , Article AES-ATEMA International Conference Series - Advances and Trends in Engineering Materials and their Applications, 1 September 2009 through 4 September 2009, Hamburg ; 2009 , Pages 57-63 ; 19243642 (ISSN) ; 9780978047962 (ISBN) Jolghazi, S ; Mehdigholi, H ; Behzad, M ; Sharif University of Technology
    Abstract
    This paper is a study on control of vibration of plate subjected to random vibration loading using magnetorheological (MR) dampers. Some key issues, i.e. model reduction, modeling of the MR dampers and their applications in vibration control of plates, are addressed in this work. MR dampers are semi-active devices that use MR fluids to produce a controllable damping with low power requirement. In this paper, first, a model reduction method for preparing a reduce order model (ROM) is presented. The method uses an optimal model truncation method which in it the ROM to be constructed such that it will provide the same frequency response characteristics as the original full model within the... 

    Vibration analysis of a rotating magnetorheological tapered sandwich beam

    , Article International Journal of Mechanical Sciences ; Volume 122 , 2017 , Pages 308-317 ; 00207403 (ISSN) Navazi, H. M ; Bornassi, S ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper investigates the free vibration analysis of a doubly tapered magnetorheological rotating sandwich beam based on the Euler-Bernoulli theory. The beam is made of a magnetorheological elastomer core sandwiched between two elastic layers. Through energy approach the kinetic and potential energies of the system are written and using the Lagrange equation the discretized form of the governing equation is derived based on the Ritz method. The free vibration analysis is carried out to obtain the natural frequency and the corresponding loss factor of the beam. Finally, after validating the formulation in order to provide a deep insight the effects of different parameters on the free... 

    Aeroelastic instability analysis of a turbomachinery cascade with magnetorheological elastomer based adaptive blades

    , Article Thin-Walled Structures ; Volume 130 , 2018 , Pages 71-84 ; 02638231 (ISSN) Bornassi, S ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Torsional aeroelastic analysis of a turbomachinery cascade comprised of three-layered sandwich blades embedded with Magnetorheological Elastomer (MRE) core layer is carried out in this paper. The MRE material is used as a constrained damping layer between two elastic skins in order to investigate its effects on the aeroelastic stability of a blade cascade. To formulate the structural dynamic of the blades, torsional theory of rectangular laminated plates is used and the unsteady Whitehead's aerodynamic theory is employed to model the aerodynamic loadings. Assumed modes method and the Lagrange's equations are used to derive the governing equations of motion of the coupled aeroelastic system.... 

    Torsional vibration analysis of a rotating tapered sandwich beam with magnetorheological elastomer core

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 11 , 2018 , Pages 2406-2423 ; 1045389X (ISSN) Bornassi, S ; Navazi, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this study, the torsional vibration analysis of a rotating tapered sandwich beam with a magnetorheological elastomer core has been investigated. The magnetorheological elastomer material is used as a constrained damping layer embedded between two elastic constraining skins in order to improve the vibrational behavior of the sandwich beam. The three layers of the sandwich beam have rectangular cross-sections with symmetric arrangement. The problem formulation is set up based on the torsional theory of rectangular laminated plates. The assumed modes method and the Lagrange equations are used to derive the governing equations of motion of the system. The validity of the presented formulation... 

    Direct numerical simulation of magnetic particles suspended in a Newtonian fluid exhibiting finite inertia under SAOS

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 256 , 2018 , Pages 8-22 ; 03770257 (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A direct numerical simulation approach is utilized to understand the oscillatory shear rheology of a confined suspension of magnetic chains formed by paramagnetic circular cylinders under the influence of an external magnetic field. The common assumption of gap-spanning chains made in the literature is relaxed in this work, so that a fully suspended (periodic) array of magnetic chains is formed. In this sense, the effective rheological parameters are only influenced through a layer of fluid adjacent to the walls. All tests are conducted at very low but finite particle Reynolds numbers, and typical inertial effects are discussed. The main aim of the present study is to investigate the... 

    Modeling magneto-mechanical behavior of Fe3O4 nanoparticle/polyamide nanocomposite membrane in an external magnetic field

    , Article Journal of Composite Materials ; Volume 52, Issue 11 , 2018 , Pages 1505-1517 ; 00219983 (ISSN) Tayefeh, A ; Wiesner, M ; Mousavi, A ; Poursalehi, R ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    The magnetic response of a polyamide nanocomposite membrane under applying a magnetic field has been modeled to evaluate elastic deformation order of magnitude. A PA-Fe3O4 nanocomposite membrane is considered to be modeled under influence of volume plane stress caused by a magnetic field. The modeling of the mechanical behavior of Fe3O4-PA nanocomposite membrane suggests that nanoparticle displacements within the nanocomposite, in the order of 200 nm under applying an external magnetic field, are greater than free volumes or porosities of the polyamide membrane. The membrane can be excited to mechanically vibrate by applying an alternating magnetic field lower than 0.1 T. As the results...