Loading...
Search for: metal-nanoparticle
0.008 seconds
Total 213 records

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles

    , Article Talanta ; Volume 226 , 2021 ; 00399140 (ISSN) Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Pedrini, A ; Verucchi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Effect of material and population on the delivery of nanoparticles to an atherosclerotic plaque: a patient-specific in silico study

    , Article Langmuir ; Volume 37, Issue 4 , 2021 , Pages 1551-1562 ; 07437463 (ISSN) Amani, A ; Shamloo, A ; Barzegar, S ; Forouzandehmehr, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Coronary artery disease (CAD) is the prevalent reason of mortality all around the world. Targeting CAD, specifically atherosclerosis, with controlled delivery of micro and nanoparticles, as drug carriers, is a very proficient approach. In this work, a patient-specific and realistic model of an atherosclerotic plaque in the left anterior descending (LAD) artery was created by image-processing of CT-scan images and implementing a finite-element mesh. Next, a fluid-solid interaction simulation considering the physiological boundary conditions was conducted. By considering the simulated force fields and particle-particle interactions, the correlation between injected particles at each cardiac... 

    Stable Photodetectors based on fstable photodetectors based on formamidinium lead iodide quantum well perovskite nanoparticles fabricated with excess organic cations.ormamidinium lead iodide quantum well perovskite nanoparticles fabricated with excess organic cations

    , Article ACS Applied Nano Materials ; Volume 4, Issue 8 , 2021 , Pages 7788-7799 ; 25740970 (ISSN) Hasanzadeh Azar, M ; Mohammadi, M ; Rezaei, N.T ; Aynehband, S ; Shooshtari, L ; Mohammadpour, R ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal halide perovskite nanoparticles have recently attracted immense interest for photodetectors due to their outstanding optical and electronic properties such as high carrier diffusion length, tunable band gap (light absorption range), and high photoluminescence (PL) efficiency. Although significant progress has been achieved in the development of perovskites, their stability is yet to be addressed. To improve the stability and quantum efficiency of FAPbI3 perovskite nanocrystals, we present a room temperature protocol to fabricate fully passivated and stable FAPbI3 nanocrystals via 2D growth in the presence of amine ligands and an excess amount of the organic cations. The crystallization... 

    Development of a colorimetric sensor array based on monometallic and bimetallic nanoparticles for discrimination of triazole fungicides

    , Article Analytical and Bioanalytical Chemistry ; April , 2021 ; 16182642 (ISSN) Kalantari, K ; Fahimi Kashani, N ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Due to the widespread use of pesticides and their harmful effects on humans and wildlife, monitoring their residual amounts in crops is critically essential but still challenging regarding the development of high-throughput approaches. Herein, a colorimetric sensor array has been proposed for discrimination and identification of triazole fungicides using monometallic and bimetallic silver and gold nanoparticles. Aggregation-induced behavior of AgNPs, AuNPs, and Au-AgNPs in the presence of four triazole fungicides produced a fingerprint response pattern for each analyte. Innovative changes to the metal composition of nanoparticles leads to the production of entirely distinct response patterns... 

    Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 135, Issue 5 , 2022 , Pages 2851-2865 ; 18785190 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, graphene oxide/gold/methylene blue (GO/Au/MB) ternary composites were synthesized and characterized through UV–vis, FTIR, XRD, XPS, SEM, and TEM analyses towards plasmon-enhanced singlet oxygen (1O2) generation. Through using gold nanoparticles and MB photosensitizers, the visible light adsorption capability of GO was enhanced by 115%. Moreover, applying this ternary composite as a photocatalyst under visible light interestingly revealed a drastic step-increase of 14% (i.e., from 9 to 23%) in the conversion of photooxygenation of Anthracene. This behavior was rationalized using finite-difference time-domain (FDTD) simulations which confirms the plasmonic field of gold... 

    In situ polymerization of curcumin incorporated polyurethane/zinc oxide nanocomposites as a potential biomaterial

    , Article Reactive and Functional Polymers ; Volume 180 , 2022 ; 13815148 (ISSN) Shah, S. A. A ; Athir, N ; Shehzad, F. K ; Cheng, J ; Gao, F ; Zhang, J ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Curcumin incorporated polyurethanes (CPU) are gaining much attention as a biomaterial. However, challenges are still remained due to hydrophobicity and low mechanical strength of CPU. Herein, we synthesized the CPU/ZnO nanocomposites with good mechanical and improved hydrophilic properties via in-situ polymerization. A series of curcumin incorporated polyurethane with different concentrations of ZnO nanoparticles (ZnCPU) are synthesized by using the curcumin, polyethylene glycol (PEG) as the soft segment, hexamethylene diisocyanate (HDI) as the hard segment, and 1,4-butanediol (BDO) as the chain extender. The addition of ZnO nanoparticles (NPs) facilitated the soft domain of PU which is... 

    Magneto-fluorescent contrast agents based on carbon Dots@Ferrite nanoparticles for tumor imaging

    , Article Journal of Magnetism and Magnetic Materials ; Volume 561 , 2022 ; 03048853 (ISSN) Mohandes, F ; Dehghani, H ; Angizi, S ; Ramedani, A ; Dolatyar, B ; Ramezani Farani, M ; Müllen, K ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Bimodal magnetic-fluorescent materials for diagnostic imaging needs surface-engineered nanoparticles with great biosafety, pronounced colloidal stability, high magnetic moments, and strong photoluminescence (PL) emission. This work presents polymer-coated nanoparticles (PCNPs) based on manganese ferrites covered with a thin shell of nitrogen-doped carbon dots for magnetic-resonance and fluorescent dual mode imaging of cancerous tumors in vivo. An in situ thermolysis of metal oxalates and phenylenediamine in diphenyl ether allows for the facile synthesis of hybrid magneto-fluorescent nanoparticles. They possess an average size of 55 ± 5 nm with strong and excitation-independent PL emission at... 

    Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation

    , Article Journal of Colloid and Interface Science ; Volume 626 , 2022 , Pages 1070-1084 ; 00219797 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure–composition–property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles... 

    Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Setayeshmehr, M ; Kiani, M ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; Volume 16, Issue 7 , 2022 , Pages 1139-1148 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2022
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Development of a colorimetric sensor array based on monometallic and bimetallic nanoparticles for discrimination of triazole fungicides

    , Article Analytical and Bioanalytical Chemistry ; Volume 414, Issue 18 , 2022 , Pages 5297-5308 ; 16182642 (ISSN) Kalantari, K ; Fahimi Kashani, N ; Hormozi Nezhada, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Due to the widespread use of pesticides and their harmful effects on humans and wildlife, monitoring their residual amounts in crops is critically essential but still challenging regarding the development of high-throughput approaches. Herein, a colorimetric sensor array has been proposed for discrimination and identification of triazole fungicides using monometallic and bimetallic silver and gold nanoparticles. Aggregation-induced behavior of AgNPs, AuNPs, and Au-AgNPs in the presence of four triazole fungicides produced a fingerprint response pattern for each analyte. Innovative changes to the metal composition of nanoparticles leads to the production of entirely distinct response patterns... 

    SPR-based assay kit for rapid determination of Pb2+

    , Article Analytica Chimica Acta ; Volume 1220 , 2022 ; 00032670 (ISSN) Amirjani, A ; Kamani, P ; Madaah Hosseini, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A recyclable optical nanosensor was developed by immobilizing L-tyrosine functionalized silver nanoparticles (AgNPs) on the polyethylene terephthalate (PET) substrate for rapid determination of Pb2+ ions. At first, the L-tyrosine functionalized AgNPs were assessed in the solution phase; the response time was lower than 15 s, and a limit of detection lower than 9 nM was obtained in the dynamic range of 1–1000 nM. For fabrication of the optical assay kit, the design of experiment (DOE) was used to optimize the immobilization efficiency of the nanoparticles on PET films by studying AgNO3 concentration and pH as two crucial parameters. The assay kit in optimal conditions showed a sharp localized...