Loading...
Search for: methodology
0.016 seconds
Total 525 records

    Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement

    , Article Materials and Design ; Vol. 53, Issue. 1 , 2014 , pp. 159-173 ; ISSN: 0895-7177 Bahraminasab, M ; Sahari, B. B ; Edwards, K. L ; Farahmand, F ; Hong, T. S ; Arumugam, M ; Jahan, A ; Sharif University of Technology
    Abstract
    The optimal design of complex systems in engineering requires pursuing rigorous mathematical modeling of the system's behavior as a function of a set of design variables to achieve goal-oriented design. Despite the success of current knee implants, the limited life span remains the main concern of this complex system. The mismatch between the properties of engineered biomaterials and those of biological materials leads to insufficient bonding with bone, stress shielding effects and wear problems (i.e. aseptic loosening). The use of a functionally graded material (FGM) for the femoral component of knee implants is attractive because the properties can be designed to vary in a certain pattern... 

    Synchronization of EEG: Bivariate and multivariate measures

    , Article IEEE Transactions on Neural Systems and Rehabilitation Engineering ; Vol. 22, Issue. 2 , 2014 , pp. 212-221 ; ISSN: 1534-4320 Jalili, M ; Barzegaran, E ; Knyazeva, M. G ; Sharif University of Technology
    Abstract
    Synchronization behavior of electroencephalographic (EEG) signals is important for decoding information processing in the human brain. Modern multichannel EEG allows a transition from traditional measurements of synchronization in pairs of EEG signals to whole-brain synchronization maps. The latter can be based on bivariate measures (BM) via averaging over pair-wise values or, alternatively, on multivariate measures (MM), which directly ascribe a single value to the synchronization in a group. In order to compare BM versus MM, we applied nine different estimators to simulated multivariate time series with known parameters and to real EEGs. We found widespread correlations between BM and MM,... 

    Optimization of uhmwpe/graphene nanocomposite processing using ziegler-natta catalytic system viaresponse surface methodology

    , Article Polymer - Plastics Technology and Engineering ; Vol. 53, Issue. 9 , June , 2014 , pp. 969-974 ; ISSN: 03602559 Shafiee, M ; Ramazani, S. A. A ; Sharif University of Technology
    Abstract
    Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X1), monomer pressure (X2), and [Al]/[Ti] molar ratio (X3) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for... 

    An integrated approach for enhancing the quality of the product by combining robust design and customer requirements

    , Article Quality and Reliability Engineering International ; Vol. 30, Issue. 8 , 2014 , pp. 1285-1292 ; ISSN: 07488017 Shahriari, H ; Haji, M. J ; Eslamipoor, R ; Sharif University of Technology
    Abstract
    Enhancing the quality of the product has always been one considerable concern of production process management, and this subject gave way to implementing so many methods including robust design. In this paper, robust design utilizes response surface methodology (RSM) considering the mean and variance of the response variable regarding system design, parameter design, and tolerance design. In this paper, customer requirements and robust design are regarded simultaneously to achieve enriched quality. Subsequently, with a non-linear programming, a novel method for integrating RSM and quality function deployment has been proposed to achieve robustness in design. The customer requirements are... 

    Economic and economic-statistical designs of phase II profile monitoring

    , Article Quality and Reliability Engineering International ; Vol. 30, issue. 5 , July , 2014 , pp. 645-655 ; ISSN: 07488017 Noorossana, R ; Niaki, S. T. A ; Ershadi, M. J ; Sharif University of Technology
    Abstract
    In economic design of profiles, parameters of a profile are determined such that the total implementation cost is minimized. These parameters consist of the number of set points, n, the interval between two successive sampling, h, and the parameters of a control chart used for monitoring. In this paper, the Lorenzen-Vance cost function is extended to model the costs associated with implementing profiles. The in-control and the out-of-control average run lengths, ARL0 and ARL1, respectively, are used as two statistical measures to evaluate the statistical performances of the proposed model. A genetic algorithm (GA) is developed for solving both the economic and the economic-statistical... 

    A new approach to solve multi-response statistical optimization problems using neural network, genetic algorithm, and goal attainment methods

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 75, issue. 5-8 , November , 2014 , pp. 1149-1162 Pasandideh, S. H. R ; Niaki, S. T. A ; Atyabi, S. M ; Sharif University of Technology
    Abstract
    Adjusting control factors (independent variables) to achieve an optimal level of output (response variable) is usually required in many real-world manufacturing problems. Common optimization methods often begin with estimating the relationship between a response and independent variables. Among these techniques, response surface methodology (RSM), due to its simplicity, has recently attracted extensive attention. However, on the one hand, in some cases, the relationship between a response and independent variables is too complex to be estimated using polynomial regression models. On the other hand, solving the obtained optimization model is not easy by exact methods. This paper introduces a... 

    Experimental design in analytical chemistry -Part I: Theory

    , Article Journal of AOAC International ; Vol. 97, issue. 1 , 2014 , pp. 3-11 ; ISSN: 10603271 Ebrahimi-Najafabadi, H ; Leardi, R ; Jalali-Heravi, M ; Sharif University of Technology
    Abstract
    This paper reviews the main concepts of experimental design applicable to the optimization of analytical chemistry techniques. The critical steps and tools for screening, including Plackett-Burman, factorial and fractional factorial designs, and response surface methodology such as central composite, Box-Behnken, and Doehlert designs, are discussed. Some useful routines are also presented for performing the procedures  

    A novel design methodology for low-noise and high-gain transimpedance amplifiers

    , Article Proceedings of the 2014 Argentine School of Micro-Nanoelectronics, Technology and Applications, EAMTA 2014 ; 2014 , pp. 77-82 ; ISBN: 9789871907861 Shahdoost, S ; Medi, A ; Bozorgzadeh, B ; Saniei, N ; Sharif University of Technology
    Abstract
    This paper reports on design and measurement results of a state of the art low-noise and high-gain transimpedance amplifier (TIA) implemented in 0.18 μm TSMC CMOS technology. Thorough design methodology for high gain and low power TIA design for 2.5 Gb/s optical communication circuits family is presented. A noiseless capacitive feedback is proposed and implemented as a noise efficient feedback network for TIA circuits. Besides, analytical noise calculations in this family of TIA circuits are presented and optimum noise criteria are derived. The saturation and instability problem of TIA circuits resulted from DC dark current of the input photodiodes (PDs) is addressed and a circuit level... 

    An evolvable self-organizing neuro-fuzzy multilayered classifier with group method data handling and grammar-based bio-inspired supervisors for fault diagnosis of hydraulic systems

    , Article International Journal of Intelligent Computing and Cybernetics ; Vol. 7, issue. 1 , 2014 , p. 38-78 Mozaffari, A ; Fathi, A ; Behzadipour, S ; Sharif University of Technology
    Abstract
    Purpose: The purpose of this paper is to apply a hybrid neuro-fuzzy paradigm called self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) to classify the operating faults of a hydraulic system. The main motivation behind the use of SONeFMUC is to attest the capabilities of neuro-fuzzy classifier for handling the difficulties associated with fault diagnosis of hydraulic circuits. Design/methodology/approach: In the proposed methodology, first, the neuro-fuzzy nodes at each layer of the SONeFMUC are trained separately using two well-known bio-inspired algorithms, i.e. a semi deterministic method with random walks called co-variance matrix adaptation evolutionary strategy (CMA-ES) and... 

    Aging aircraft cost analysis using system dynamics modeling

    , Article 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014 ; 7-12 September , 2014 ; ISBN: 3932182804 Fouladi, E ; Shadaab, N ; Abedian, A ; Tanara, A. K ; Sharif University of Technology
    Abstract
    Ways to reduce an airline's cost has been studied for years. In fact, in order to achieve this goal, ones need to know different types of airline's costs including; fuel and oil, maintenance, Ticketing, passenger services, etc. and their impact on the total cost of an airline. According to announcement of ICAO [1], "maintenance cost (about 11% of total cost) is the second major cost after fuel and oil". Therefore, this may attract airline owners' attention to find ways to control maintenance cost and eventually the total cost of an airline. Though, there are many systematic approaches to analyze cost reduction and making policies, in this article, SD modeling is applied to develop a... 

    Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime

    , Article Materials Science and Engineering C ; Vol. 34, issue. 1 , 2014 , pp. 318-325 ; ISSN: 09284931 Shahrokhian, S ; Salimian, R ; Rastgar, S ; Sharif University of Technology
    Abstract
    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT,... 

    Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application

    , Article Talanta ; Vol. 119 , 2014 , pp. 156-163 ; ISSN: 00399140 Rastgar, S ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity... 

    Control of nonholonomic mobile manipulators for cooperative object transportation

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , p. 347-357 Sayyaadi, H ; Babaee, M ; Sharif University of Technology
    Abstract
    In this paper, a methodology for transporting objects with a group of wheeled nonholonomic mobile manipulators is presented. A full dynamic model of a mobile manipulator with a three wheeled mobile base and a three DOF manipulator is derived using the Gibbs-Appell method. Since the dynamical equations of a mobile robot are highly nonlinear, an input-output linearization technique is used to control individual robots. Transporting the object is divided into two steps. First, the robots use a decentralized behavior-based method to approach and surround the object. Then, a virtual structure method is used to control the robots to transport the object cooperatively. A numerical simulation study... 

    Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 1 , 2014 , p. 77-88 Shahrokhian, S ; Hosseini-Nassab, N ; Kamalzadeh, Z ; Sharif University of Technology
    Abstract
    A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01-10.00 μM with a detection limit of... 

    Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM)

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , 2014 Mirizadeh, S ; Yaghmaei, S ; Nejad, Z. G ; Sharif University of Technology
    Abstract
    Background: Biodegradation of free cyanide from industrial wastewaters has been proven as a viable and robust method for treatment of wastewaters containing cyanide. Results: Cyanide degrading bacteria were isolated from a wastewater treatment plant for coke-oven-gas condensate by enrichment culture technique. Five strains were able to use cyanide as the sole nitrogen source under alkaline conditions and among them; one strain (C2) was selected for further studies on the basis of the higher efficiency of cyanide degradation. The bacterium was able to tolerate free cyanide at concentrations of up to 500 ppm which makes it a good potentially candidate for the biological treatment of cyanide... 

    Experimental design in analytical chemistry - Part II: Applications

    , Article Journal of AOAC International ; Vol. 97, issue. 1 , 2014 , p. 12-18 Ebrahimi-Najafabadi, H ; Leardi, R ; Jalali-Heravi, M ; Sharif University of Technology
    Abstract
    This paper reviews the applications of experimental design to optimize some analytical chemistry techniques such as extraction, chromatography separation, capillary electrophoresis, spectroscopy, and electroanalytical methods  

    Investigating the role of ultrasonic wave on two-phase relative permeability in a free gravity drainage process

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 763-771 Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghazanfari, M. H ; Ghotbi, C ; Sharif University of Technology
    Abstract
    In this work, the process of free gravity drainage under the influence of ultrasonic waves was investigated. A glass bead pack porous medium was used to perform free fall gravity drainage experiments. The tests were performed in the presence and absence of ultrasonic waves, and the data of recovery were recorded versus time under both conditions. The wetting phase relative permeability curves were obtained using the data of recovery versus time, based on the Hagoort backward methodology. Subsequently, using the wetting phase relative permeability curve, the relative permeability of non-wetting phases were calculated by performing history matching to the experimental production data. The... 

    An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , 2014 Hosseinpour, M ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    Background: In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods: The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results: Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration... 

    Bi-objective resource constrained project scheduling problem with makespan and net present value criteria: Two meta-heuristic algorithms

    , Article International Journal of Advanced Manufacturing Technology ; Volume 69, Issue 1-4 , 2013 , Pages 617-626 ; 02683768 (ISSN) Khalili, S ; Najafi, A. A ; Niaki, S.T. A ; Sharif University of Technology
    2013
    Abstract
    Traditionally, the model of a resource-constrained project-scheduling problem (RCPSP) contains a single objective function of either minimizing project makespan or maximizing project net present value (NPV). In order to be more realistic, in this paper, two multi-objective meta-heuristic algorithms of multi-population and two-phase sub-population genetic algorithms are proposed to find Pareto front solutions that minimize the project makespan and maximize the project NPV of a RCPSP, simultaneously. Based on standard test problems constructed by the RanGen project generator, a comprehensive computational experiment is performed, where response surface methodology is employed to tune the... 

    Vanadium pentoxide catalyst over carbon-based nanomaterials for the oxidative dehydrogenation of propane

    , Article Industrial and Engineering Chemistry Research ; Volume 52, Issue 46 , 2013 , Pages 16128-16141 ; 08885885 (ISSN) Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A. M ; Sharif University of Technology
    2013
    Abstract
    A series of V2O5 catalysts supported on multiwall carbon nanotube (MWCNT), single wall carbon nanotube (SWCNT), and graphene were synthesized by hydrothermal and reflux methods for oxidative dehydrogenation of propane (ODHP) to propylene. The catalysts were characterized by techniques including the BET surface area measurements, XRD, FTIR, H2-TPR, NH3-TPD, FESEM, and UV-vis diffuse reflectance spectroscopy. The performance of the catalysts and the supports were subsequently examined in a fixed bed reactor. The main products were propylene, ethylene and CO x. The vanadium catalyst supported on graphene with C/V molar ratio of 1:1 synthesized through the hydrothermal method had the best...