Loading...
Search for: microchannels
0.012 seconds
Total 197 records

    Fluid flow and heat transfer in microchannel with and without porous medium under constant heat flux

    , Article Sadhana - Academy Proceedings in Engineering Sciences ; Volume 47, Issue 2 , 2022 ; 02562499 (ISSN) Shamsoddini Lori, M ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, the heat transfer and fluid flow characteristics of a three-dimensional microchannel that is partially filled with a layer of porous medium at its bottom solid wall is investigated. The microchannel is consisted of a clear fluid flow region, solid walls and a porous layer that is attached to its solid bottom wall. A constant heat flux is applied to the bottom wall of the microchannel. Darcy-Brinkman-Forchheimer model is used to simulate the fluid flow inside the porous medium. The novelty of this work is to investigate thoroughly and precisely the effect of using of porous layer configuration in MCHSs on hydraulic and thermal performances. The effect of porous layer thickness,... 

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Analysis of Heat Transfer and Fluid Flow in Partial Porous Microchannel

    , M.Sc. Thesis Sharif University of Technology Shamsoddini Lori, Mohammad (Author) ; Nouri Brorujerdi, Ali (Supervisor)
    Abstract
    In this study, heat transfer and fluid flow inside a rectangular microchannel with partial porous media is simulated numerically. Darcy-Brinkman-Forchheimer equations are used to model the porous media. The effect of height of porous media, permeability (Darcy number), porosity and inlet velocity (Reynolds number) on Hydrodynamic and heat transfer performance are examined. At different values of height of porous media 0.2, 0.4, 0.6, 0.8, and 1 mm the Nusselt number of microchannel are 1.72, 1.78, 1.86, 1.94, and 2.02 compared to the microchannel without porous media. And the porous drop are 1.09, 1.2, 1.49, 1.76, and 2.15 compared to the microchannel without porous media. And FOM are 1.78,... 

    Numerical Simulation of Micro channel for Cells Counting Based on the Impedance Measurement of Cell Lysate

    , M.Sc. Thesis Sharif University of Technology Khademi, Maryam (Author) ; Saidi, Mohammad Said (Supervisor) ; Sani, Mahdi ($item.subfieldsMap.e)
    Abstract
    Nowadays cell-based microfluidic devices have many applications. One of the applications is disease diagnosis according to number of cells. Cell counting has different methods, such as optical cell counting, flow cytometry, hemocytometry, coulter counters,and so on. One of the methods of cells counting is based on measurement of changes in impedance or conductivity of surrounding medium because ions are released from surface-immobilized cells inside a micr of luidic channel.The method of cell lysate impedance spectroscopy is sensitive enough and it was offered for detecting and enumerating CD4+ cells in HIV patients. In this study,... 

    Fabrication the Hydrogel Microfibers Using Bioprinter with Application in Cardiovascular Model

    , M.Sc. Thesis Sharif University of Technology Heidari, Faranak (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Cardiovascular disease (CVD) currently remains a considerable challenge for clinical treatments. CVDs account for N17.5 million deaths per year and will predictably increase to 23.6 million by 2030. The main purpose is to create human model systems to study the effect of disease mutations or drug treatment on the heart. In addition, engineered cardiac tissues are considered promising candidates to be transplanted to improve the function of diseased hearts. For engineered active tissues/organs, 3D bioprinting can fabricate complex tissue architecture with a spatiotemporal distribution of bioactive substances (cells, growth factors, and others) to better guide tissue regeneration. However,... 

    Design and Simulation of a Spiral Based Microfluidic Device for Separation of Circulating Tumor Cells Using Tunable Nature of Viscoelastic Fluid

    , M.Sc. Thesis Sharif University of Technology Nouri, Mohammad Moein (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Nowadays, cancer, which has been mentioned as the disease of the century, is the second leading cause of death throughout the world, and its incidence is constantly increasing. Isolation of circulating tumor cells is one of the most critical steps in diagnosing and controlling cancer progression. Due to the rarity of cancer cells compared to other cells in the blood sample, the isolation process requires optimal and high-precision devices. With the advent of inertial microfluidics, the ability to control the particles movement, the processing of blood samples as quickly and accurately as possible, and the viability of cells with a high percentage, introduced microfluidic systems as a... 

    Design of Scaffolds with Multi-scale Engineered Microchannels

    , M.Sc. Thesis Sharif University of Technology Mollajavadi, Mohammad Yasin (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Building complex and functional tissues and organs is very challenging. One of the challenges is building an efficient network of blood vessels that can be used to facilitate the transport of nutrients and oxygen to the host. In addition to using channels for oxygen supply, another solution is to use oxygen-carrying materials. In this study, in addition to designing and simulating scaffolds with multi-scale microchannels, calcium peroxide was used to release oxygen and eliminate hypoxia in the scaffold. Here alginate is used as the main material for scaffolding. In an attempt to build a scaffold using a bio-printer, pluronic acid was also used as a sacrificial material to create canals.... 

    Production of Liquid Metal Micro-droplets and Electrical Control of their Size and Rate of Formation

    , M.Sc. Thesis Sharif University of Technology Asiabi Mollahaji, Arezoo (Author) ; Kebriaee, Azadeh (Supervisor)
    Abstract
    The use of liquid metal droplets due to their high electrical and thermal conductivity are used in various industries today. One of the methods of producing these micro-droplets is the flow focusing method, which is widely used to produce integrated and monodispersed droplets. Liquid metals have high surface tension and these micro-droplets are formed only if there is sufficient shear force between the liquid metal and a continuous fluid phase. In the past, they used several different methods such as pressure fluctuations and changes in continuous phase flow rate to control the shear force and produced polymer, gas, etc. micro-droplets.In this research, use the electric potential to control... 

    Novel unbreakable solid-phase microextraction fibers on stainless steel wire and application for the determination of oxadiargyl in environmental and agricultural samples in combination with gas chromatography-mass spectrometry

    , Article Talanta ; Vol. 128, issue , 2014 , Pages 231-236 ; ISSN: 00399140 Es-Haghi, A ; Baghernejad, M ; Bagheri, H ; Sharif University of Technology
    Abstract
    Sol-gel based solid-phase microextraction fibers supported by a stainless steel wire were fabricated and employed for GC-MS determination of oxadiargyl in real samples. The fibers were based on four compounds with different polarity: polar and non-polar (end-capped) poly(dimethylsiloxane) (PDMS), polyethylene glycol (PEG), and poly(ethylene-propyleneglycol)-monobutyl ether (UCON). For this purpose, the surface of the stainless steel was initially modified by (3-mercaptopropyl) trimethoxysilane. The results of the modification procedure were evaluated by cyclic voltammetry and energy dispersive X-ray (EDX) spectroscopy. After the modification, four different sol-gel based SPME fibers with... 

    Gaseous slip flow forced convection in microducts of arbitrary but constant cross section

    , Article Nanoscale and Microscale Thermophysical Engineering ; Vol. 18, issue. 4 , 2014 , p. 354-372 Baghani, M ; Sadeghi, A ; Sharif University of Technology
    Abstract
    This is a theoretical study that extends a classical method of treating the convection heat transfer in complex geometries to gaseous slip flow forced convection in microchannels with H1 thermal boundary condition. Through this line, the momentum and energy equations in cylindrical coordinates are made dimensionless. Afterward, solutions are presented that exactly satisfy the dimensionless differential equations along with the symmetry condition and finiteness of the flow parameter at the origin. The first-order slip boundary conditions are then applied to the solution utilizing the least squares matching method. Though the method is general enough to be applied to almost any arbitrary cross... 

    Mixing enhancement of two gases in a microchannel using DSMC

    , Article Applied Mechanics and Materials, Dubai ; Volume 307 , 2013 , Pages 166-169 ; 16609336 (ISSN) ; 9783037856598 (ISBN) Darbandi, M ; Lakzian, E ; Sharif University of Technology
    2013
    Abstract
    In high Knudsen number flow regimes microgas flow analysis may not be performed accurately using the classical CFD methods. Alternatively, the gas flow through micro-geometries can be investigated reliably using the direct simulation Monte Carlo (DSMC) method. Our concern in this paper is to use DSMC to study the mixing of two gases in entering simultaneously into a microchannel. The mixing process is assumed to be complete when the mass composition of each species deviates by no more than ±1% from its equilibrium composition. To enhance the mixing process, we focus on the effects of inlet-outlet pressure difference and the pressure ratios of the two incoming CO and N2 streams on the mixing... 

    Experimental study of the startup performance of ferrofluidic open loop Pulsating Heat Pipes

    , Article ASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012, Rio Grande, 8 July 2012 through 12 July 2012 ; Volume 2 , 2012 , Pages 585-591 ; 9780791844786 (ISBN) Maziar, M ; Mehdi, T ; Siamak, K. H ; Mohammad Hassan, S ; Hossein, A ; Mohammad Behshad, S ; Sharif University of Technology
    2012
    Abstract
    Pulsating Heat Pipes (PHPs) are new and promising heat transfer devices. To implement the novel idea to vary the startup performance of a PHP using ferrofluid with and without the application of magnetic field, an experimental investigation is conducted. The effects of several important parameters including working fluid, charging ratio, heat input, ferrofluid concentration, internal pressure, and application of magnetic field on the startup performance of Open Loop Pulsating Heat Pipes (Open Loop PHPs) have been considered and described in detail. Obtained results show that using ferrofluid instead of distilled water can improve the startup performance of PHPs in certain conditions.... 

    Molecular dynamics simulation of nano channel as nanopumps

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011, Edmonton, AB ; Volume 2 , 2011 , Pages 223-227 ; 9780791844649 (ISBN) Darbandi, M ; Abbasi, H. R ; Khaledi Alidusti, R ; Sabouri, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    We use three-dimensional molecular dynamics simulation to investigate the driven flow between two parallel plates separated by argon atoms. Our simulations show that fluids in such channels can be continuously driven. Difference in surface wettability can cause a difference in fluid density along the nano channel. To control the nanochannel temperature walls, we use the thermal wall idea, which models the walls using atoms connected to their original positions by enforcing linear spring forces. In this study, we propose a nanochannel system in which, half of the channel has a low surface wettability, while the other half has a higher surface wettability and that the middle part of channel... 

    Developing cross drag expressions for nanotube bundles using molecular dynamics

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 2 , June , 2011 , Pages 259-263 ; 9780791844649 (ISBN) Darbandi, M ; Khaledi Alidusti, R ; Abbaspour, M ; Abbasi, H. R ; Sabouri, M ; Schneider, G. E ; Sharif University of Technology
    2011
    Abstract
    The nonequilibrium molecular dynamics (NEMD) simulations are performed to calculation the cross drag over a nanotube located in a uniform liquid argon flow. As is known, the behavior of fluid flows in nano-scale sizes is very different from that in microscopic and macroscopic sizes. In this work, our concern is on the flow of argon molecules over a nanotube which occurs in nanoscale sizes. We calculate the cross drag enforced the nanotube at Re<10. In this regard, we use the molecular dynamics and simulate the flow of argon molecules over (6,0), (8,0) and (10,0) nanotubes. The simulations are performed at different velocities and the cross drag coefficient is computed at different Reynolds... 

    Thermal interaction of laser beam with particulate flow in mini-channels

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 2 , June , 2011 , Pages 355-366 ; 9780791844649 (ISBN) Zabetian, M ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    Optical propulsion via laser source is a relatively new and non-contact tool for manipulation of microscopic objects. The method is based on the radiation pressure of light photons on the micron sized particles. Applications of the technique mainly cover microscopic separation, purification and cellular studies. Due to high power intensity of laser beams, absorption of light may result in heating and damage of objects to be manipulated. In addition, the difference between heated and cold zones can lead to a naturally driven flow around the objects. So precisely controlled conditions should be set up to avoid thermal effects. In this work, a theoretical study is conducted to investigate the... 

    Experimental study of the effects of ferrofluid on thermal performance of a pulsating heat pipe

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 435-440 ; 9780791844632 (ISBN) Maziar, M ; Mohammad, M ; Amir, R. G ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    In this work, a four-turn Pulsating Heat Pipe (PHP) is fabricated and tested experimentally. The novelty of the present PHP is the capability of obtaining various thermal performances at a specific heat input by changing the magnetic field. The effects of working fluid (water and ferrofluid), charging ratio (25%, 40%, and 55%), heat input (25, 35, 45, 55, 65, 75, and 85 W), orientation (vertical and horizontal heat mode), and magnetic field on the thermal performance of PHPs are investigated. The results showed that applying the magnetic field on the water based ferrofluid reduced the thermal resistance of PHP by a factor of 40.5% and 38.3% in comparison with the pure water case for the... 

    Study of cut-off radius and temperature effects on water molecular behavior using molecular dynamics method

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011, Edmonton, AB ; Volume 2 , 2011 , Pages 277-282 ; 9780791844649 (ISBN) Darbandi, M ; Khaledi-Alidusti, R ; Abbaspour, M ; Abbasi, H. R ; Schneider, G ; Sharif University of Technology
    2011
    Abstract
    Water molecules are one of the important molecules in nanofluidics. Its structure and its behavior can change with Temperature and cut-off distance parameters. In this study temperature and cut-off distance effects on the nano-scale water molecules behavior are investigated by molecular dynamics simulations. Many water molecular models have been developed in order to help discover the structure of water molecules. In this study, the flexible three centered (TIP3P-C) water potential is used to model the inter- and intramolecular interactions of the water molecules. In this simulation, we have been studied 512 water molecules with periodic boundary conditions and in a simulation box with 25... 

    Thermal transport characteristics of non-newtonian electroosmotic flow in a slit microchannel

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 1 , June , 2011 , Pages 169-176 ; 9780791844632 (ISBN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmosis has many applications in fluid delivery at microscale, sample collection, detection, mixing and separation of various biological and chemical species. In biological applications, most fluids are known to be non-Newtonian. Therefore, the study of thermal features of non-Newtonian electroosmotic flow is of great importance for scientific communities. In the present work, the fully developed electroosmotic flow of power-law fluids in a slit microchannel is investigated. The related equations are transformed into non-dimensional forms and necessary changes are made to adapt them for non-Newtonian fluids of power-law model. Results show that depending on different flow parameters... 

    The study of microfilter performance in different environments using DSMC

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 1 , June , 2011 , Pages 289-294 ; 9780791844632 (ISBN) Darbandi, M ; Karchani, A ; Khaledi Alidusti, R ; Schneider, G. E ; Sharif University of Technology
    2011
    Abstract
    Microfilters are commonly used to block undesirable particles in the fluid flows and to control the flow patterns in MEMS. The main purpose of this study is to understand the effect of gas type on density, pressure, Mach number, and velocity distributions of fluid flows through a microfilter. The Knudsen number is the slip flow regime passing through the microfilter. We use direct simulation Monte Carlo (DSMC) method to simulate the flow of nitrogen, helium, oxygen, air and methane passing through a specific microfilter. The geometry of microfilter is unique in all cases. Our results confirm that every gas performs a different performance passing through a specific microfilter, and that the... 

    An approximate analytical solution for electro-osmotic flow of power-law fluids in a planar microchannel

    , Article Journal of Heat Transfer ; Volume 133, Issue 9 , July , 2011 ; 00221481 (ISSN) Sadeghi, A ; Fattahi, M ; Hassan Saidi, M ; Sharif University of Technology
    2011
    Abstract
    The present investigation considers the fully developed electro-osmotic flow of power-law fluids in a planar microchannel subject to constant wall heat fluxes. Using an approximate velocity distribution, closed form expressions are obtained for the transverse distribution of temperature and Nusselt number. The approximate solution is found to be quite accurate, especially for the values of higher than ten for the dimensionless Debye-Huckel parameter where the exact values of Nusselt number are predicted. The results demonstrate that a higher value of the dimensionless Debye-Huckel parameter is accompanied by a higher Nusselt number for wall cooling, whereas the opposite is true for wall...