Loading...
Search for: microfluidics
0.014 seconds
Total 321 records

    Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation

    , Article Materials Today Chemistry ; Volume 24 , 2022 ; 24685194 (ISSN) Besanjideh, M ; Rezaeian, M ; Mahmoudi, Z ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Droplet-based microfluidics is an attractive approach for producing microgels due to its high potential to control the size and shape of the particles and precisely entrap the substances within the hydrogel matrix. However, the microfluidic generation of monodisperse microgels with desired structures is still challenging. Indeed, the rheological and interfacial properties of the immiscible fluids, as well as the adopted gelling strategy, play important roles in microfluidic methods. Herein, sodium alginate droplets with different concentrations are generated via a microfluidic device with a flow-focusing unit. Besides, a combined in situ and ex situ strategy is optimized to crosslink sodium... 

    Production of uniform size cell-enclosing silk derivative vehicles through coaxial microfluidic device and horseradish crosslinking reaction

    , Article European Polymer Journal ; Volume 172 , 2022 ; 00143057 (ISSN) Badali, E ; Hosseini, M ; Varaa, N ; Mahmoodi, N ; Goodarzi, A ; Taghdiri Nooshabadi, V ; Hassanzadeh, S ; Arabpour, Z ; Khanmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Silk fibroin (SF) as a natural biopolymer holds great potential in biomedical research because of its biocompatibility, easy processability and high strength properties. However, slow gelation time has narrowed its applications, specifically in cell-laden microparticle production due to insufficient crosslinkable moieties. This study aimed to develop cell-laden silk fibroin-phenol (SF-Ph) microparticle through co-flow microfluidic system using SF conjugated Ph moieties whereas covalent crosslinking is mediated with horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). For this, the SF-Ph was synthesized through carbodiimide condensation crosslinking reaction. Aqueous... 

    Emerging bioengineering strategies for regulating stem cell fate: Scaffold physical and biochemical cues

    , Article Tissue Engineering: Current Status and Challenges ; 2022 , Pages 125-156 ; 9780128240649 (ISBN) Sharareh Mahdavi, S ; Mashayekhan, S ; Sharif University of Technology
    Elsevier  2022
    Abstract
    Stem cell therapy has been introduced as an emerging approach for injured tissue regeneration. This chapter addresses developing regenerative medicine techniques for controlling stem cell behavior. Recent studies have been reviewed and novel approaches have been divided into four main categories: 3D bioprinting, lithography, microfluidics, and electrospinning. Moreover, the impact of applied biophysical and/or biochemical cues to the designed scaffold on controlling stem cell activity has been discussed. The potential of using stem cells for various soft and hard tissue regenerations has been explored in different bioengineered scaffolds and the applied techniques for controlling stem cell... 

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    From nitrate determination using microfluidic sensors to photocatalytic process intensification

    , Article International Journal of Environmental Analytical Chemistry ; Volume 102, Issue 10 , 2022 , Pages 2416-2450 ; 03067319 (ISSN) Sohrabi, S ; Moraveji, M. K ; Mousavi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This review paper is devoted to the intensification of processes for nitrate removal. First, the developments of microfluidic sensors for nitrate detection and analysis have addressed. Second, the process variables of photocatalytic nitrate removal have been categorized according to their relationship with activity, selectivity and stability of the catalyst. The objective of this classification is to generate guidelines toward the photocatalytic process optimization. Third, because of the fact that a single method for nitrate removal faces some challenges, hybrid methods have been presented, and the best choice for nitrate removal can be referred to as photocatalytic – reverse osmosis... 

    How does a microfluidic platform tune the morphological properties of polybenzimidazole nanoparticles?

    , Article Journal of Physical Chemistry B ; Volume 126, Issue 1 , 2022 , Pages 308-326 ; 15206106 (ISSN) Mehdizadeh Chellehbari, Y ; Sayyad Amin, J ; Zendehboudi, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Microfluidic synthesis methods are among the most promising approaches for controlling the size and morphology of polymeric nanoparticles (NPs). In this work, for the first time, atomistic mechanisms involved in morphological changes of polybenzimidazole (PBI) NPs in microfluidic media are investigated. The multiscale molecular dynamic (MD) simulations are validated with the literature modeling and experimental data. A good agreement is obtained between the molecular modeling results and experimental data. The effects of mixing time, solvent type, dopant, and simulation box size at the molecular level are investigated. Mixing time has a positive impact on the morphology of the PBI NPs.... 

    The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

    , Article Journal of Assisted Reproduction and Genetics ; Volume 39, Issue 1 , 2022 , Pages 19-36 ; 10580468 (ISSN) Ahmadkhani, N ; Hosseini, M ; Saadatmand, M ; Abbaspourrad, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to... 

    Microfluidic-based droplets for advanced regenerative medicine: current challenges and future trends

    , Article Biosensors ; Volume 12, Issue 1 , 2022 ; 20796374 (ISSN) Nazari, H ; Heirani Tabasi, A ; Ghorbani, S ; Eyni, H ; Razavi Bazaz, S ; Khayati, M ; Gheidari, F ; Moradpour, K ; Kehtari, M ; Ahmadi Tafti, S.M ; Ahmadi Tafti, S. H ; Warkiani, M. E ; Sharif University of Technology
    MDPI  2022
    Abstract
    Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue... 

    Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics

    , Article Soft Matter ; Volume 17, Issue 5 , 2021 , Pages 1317-1329 ; 1744683X (ISSN) Bijarchi, M. A ; Dizani, M ; Honarmand, M ; Shafii, M. B ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Micro-magnetofluidics offers a promising tool for better control over the ferrofluid droplet manipulation which has been vastly utilized in biomedical applications in recent years. In this study, the ferrofluid droplet splitting under an asymmetric Pulse-Width-Modulated (PWM) magnetic field in a T-junction is numerically investigated using a finite volume method and VOF two-phase model. By utilizing the PWM magnetic field, two novel regimes of ferrofluid droplet splitting named as Flowing through the Same Branch (FSB) and Double Splitting (DS) have been observed for the first time. In the FSB regime, the daughter droplets move out of the same microchannel outlet, and in the DS regime, the... 

    Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections

    , Article Langmuir ; Volume 37, Issue 17 , 2021 , Pages 5118-5130 ; 07437463 (ISSN) Ghazimirsaeed, E ; Madadelahi, M ; Dizani, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Chemical bioreactions are an important aspect of many recent microfluidic devices, and their applications in biomedical science have been growing worldwide. Droplet-based microreactors are among the attractive types of unit operations, which utilize droplets for enhancement in both mixing and chemical reactions. In the present study, a finite-volume-method (FVM) numerical investigation is conducted based on the volume-of-fluid (VOF) applying for the droplet-based flows. This multiphase computational modeling is used for the study of the chemical reaction and mixing phenomenon inside a serpentine microchannel and explores the effects of the aspect ratio (i.e., AR = height/width) of... 

    Healthy and diseasedin vitromodels of vascular systems

    , Article Lab on a Chip ; Volume 21, Issue 4 , 2021 , Pages 641-659 ; 14730197 (ISSN) Hosseini, V ; Mallone, A ; Nasrollahi, F ; Ostrovidov, S ; Nasiri, R ; Mahmoodi, M ; Haghniaz, R ; Baidya, A ; Salek, M. M ; Darabi, M. A ; Orive, G ; Shamloo, A ; Dokmeci, M. R ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability ofin vitromodels for interim analysis have increased the use ofin vitrohuman vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with... 

    A new detection chamber design on centrifugal microfluidic platform to measure hemoglobin of whole blood

    , Article SLAS Technology ; Volume 26, Issue 4 , 2021 , Pages 392-398 ; 24726303 (ISSN) Mahmodi Arjmand, E ; Saadatmand, M ; Eghbal, M ; Bakhtiari, M. R ; Mehraji, S ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    Undoubtedly, microfluidics has been a focal point of interdisciplinary science during the last two decades, resulting in many developments in this area. Centrifugal microfluidic platforms have good potential for use in point-of-care devices because they take advantage of some intrinsic forces, most notably centrifugal force, which obviates the need to any external driving forces. Herein, we introduce a newly designed detection chamber for use on microfluidic discs that can be employed as an absorbance readout step in cases where the final solution has a very low viscosity and surface tension. In such situations, our chamber easily eliminates the air bubbles from the final solution without... 

    Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry

    , Article Physics of Fluids ; Volume 33, Issue 7 , 2021 ; 10706631 (ISSN) Mehraji, S ; Saadatmand, M ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Microfluidic systems are an interesting topic for investigation due to their wide-spreading applications. Nowadays, polymeric solutions are used mainly for the generation of microparticles in biomedical engineering, food, and pharmaceutical industries. Droplet-based microfluidic devices have proposed an extensive interest in many applications such as chemical/biological/nanomaterial preparation to understand deeply the droplet size and formation in microchannels. However, numerous experimental and numerical studies have been done for oil-water combination, polymeric solutions behavior in the presence of oil has not been investigated widely. Therefore, it is important to understand the... 

    Pore-scale insights into sludge formation damage during acid stimulation and its underlying mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Mirkhoshhal, S. M ; Mahani, H ; Ayatollahi, S ; Mohammadzadeh Shirazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Acid-oil emulsion and sludge formation are known as two major formation damage mechanisms and the reason for failure of some acid treatments. The published studies in this area focus primarily on core- to well/reservoir-scale and it is fairly unclear how acid-oil interaction at the pore-scale leads to the formation damage observed at the macro- or core-scale. In this paper, dynamic, micro-scale experiments were designed and executed to investigate the acid-induced formation damage using microfluidic approach. In addition, a series of so-called static (microscope) tests were performed in which acid-crude oil compatibility tests were conducted on a glass slide followed by microscopic... 

    Fabrication of a microdialysis-based nonenzymatic microfluidic sensor for regular glucose measurement

    , Article Sensors and Actuators, B: Chemical ; Volume 333 , 2021 ; 09254005 (ISSN) Najmi, A ; Saidi, M. S ; Shahrokhian, S ; Hosseini, H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Microdialysis-based continuous glucose measuring systems are desirable candidates for accurate and biologically safe monitoring of glucose level in diabetic patients. However, it is necessary to improve these systems by utilizing highly reliable non-enzymatic sensors instead of enzymatic ones, while lowering the size and lessening the dialysis fluid consumption. Our purpose is to design an implantable integrated microfluidic device for regular nonenzymatic microdialysis-based glucose measurement. We report a novel nonenzymatic microfluidic glucose sensor based on Pt-Ni nanoparticles - multiwalled carbon nanotubes/screen-printed carbon electrode (Pt-Ni NPs-MWCNTs/SPE). Devised microfluidic... 

    Design of a hybrid inertial and magnetophoretic microfluidic device for ctcs separation from blood

    , Article Micromachines ; Volume 12, Issue 8 , 2021 ; 2072666X (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive method and magnetic method as an active method are two efficient well-established methods. Here, we investigated the combination of these two methods to separate CTCs from a blood sample in a single chip. Firstly, numerical simulations were performed to analyze the fluid flow within the proposed channel, and the particle trajectories within the inertial cell separation unit were investigated to... 

    Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device

    , Article Chemical Engineering Science ; 2021 ; 00092509 (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The separation of cancer cells from a heterogeneous biological sample such as blood plays a vital role in cancer study and future treatments. In this paper, we designed and investigated two microfluidic devices for cancer cell separation, including a serpentine inertial device and an integrated inertial-magnetophoretic device. Firstly, numerical modeling was carried out to study the fluid flow, particles’ trajectories in the inertial device. Then the device was fabricated using soft photolithography and suspension of two types of microparticles with the size of 10 and 15 µm were injected into the microchannel separately to investigate the particles’ trajectories and focusing behavior at... 

    Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: Recent advances

    , Article ACS Biomaterials Science and Engineering ; Volume 7, Issue 7 , 2021 , Pages 3053-3068 ; 23739878 (ISSN) Rabiee, N ; Khatami, M ; Jamalipour Soufi, G ; Fatahi, Y ; Iravani, S ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic... 

    Nanotechnology-assisted microfluidic systems: From bench to bedside

    , Article Nanomedicine ; Volume 16, Issue 3 , 2021 , Pages 237-258 ; 17435889 (ISSN) Rabiee, N ; Ahmadi, S ; Fatahi, Y ; Rabiee, M ; Bagherzadeh, M ; Dinarvand, R ; Bagheri, B ; Zarrintaj, P ; Saeb, M. R ; Webster, T. J ; Sharif University of Technology
    Future Medicine Ltd  2021
    Abstract
    With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions...