Loading...
Search for: mouse
0.007 seconds

    Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

    , Article Critical Reviews in Biotechnology ; Volume 38, Issue 1 , 2018 , Pages 47-67 ; 07388551 (ISSN) Malekzad, H ; Mirshekari, H ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Baniasadi, F ; Sharifi Aghdam, M ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble... 

    Oncolytic newcastle disease virus delivered by mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment

    , Article Virology Journal ; Volume 17, Issue 1 , 2020 Keshavarz, M ; Ebrahimzadeh, M. S ; Miri, S. M ; Dianat Moghadam, H ; Ghorbanhosseini, S. S ; Mohebbi, S. R ; Keyvani, H ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor. Methods: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune... 

    Nonparametric simulation of signal transduction networks with semi-synchronized update

    , Article PLoS ONE ; Volume 7, Issue 6 , 2012 ; 19326203 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2012
    Abstract
    Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins computed through existing non-parametric modeling tools do not show significant correlations with the observed values in experimental results. In this work we developed a non-parametric computational... 

    New proline, alanine, serine repeat sequence for pharmacokinetic enhancement of anti-vegf single-domain antibody

    , Article Journal of Pharmacology and Experimental Therapeutics ; Volume 375, Issue 1 , July , 2020 , Pages 69-75 Khodabakhsh, F ; Salimian, M ; Mehdizadeh, A ; Khosravy, M. S ; Vafabakhsh, A ; Karami, E ; Cohan, R. A ; Sharif University of Technology
    American Society for Pharmacology and Experimental Therapy  2020
    Abstract
    Therapeutic fragmented antibodies show a poor pharmacokinetic profile that leads to frequent high-dose administration. In the current study, for the first time, a novel proline, alanine, serine (PAS) repeat sequence called PAS#208 was designed to extend the plasma half-life of a nanosized anti-vascular endothelial growth factor-A single-domain antibody. Polyacrylamide gel electrophoresis, circular dichroism, dynamic light scattering, and electrophoretic light scattering were used to assess the physicochemical properties of the newly designed PAS sequence. The effect of PAS#208 on the biologic activity of a single-domain antibody was studied using an in vitro proliferation assay. The... 

    Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing

    , Article International Journal of Biological Macromolecules ; Volume 134 , 2019 , Pages 280-289 ; 01418130 (ISSN) Azarniya, A ; Tamjid, E ; Eslahi, N ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    To enhance physicomechanical properties and bioactivity of fibrous membranes for wound dressing and tissue engineering applications, novel composite scaffolds consisting of fibrous mats and thermosensitive hydrogel particles were prepared by concurrent electrospinning and electrospraying technique. The composite scaffolds were composed of keratin/bacterial cellulose fibers (150 ± 43 nm) which are hybridized with hydrogel particles (500 nm to 2 μm) based on nonionic triblock copolymers conjugated with Tragacanth gum (TG). FTIR and H-NMR studies indicated ester reactions between carboxylated copolymers and TG through carbodiimide crosslinker chemistry. The hydrogel particles were uniformly... 

    Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Shahverdi, M ; Seifi, S ; Akbari, A ; Mohammadi, K ; Shamloo, A ; Movahhedy, M. R ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers’ attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the... 

    Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice

    , Article Journal of Drug Delivery Science and Technology ; Volume 65 , 2021 ; 17732247 (ISSN) Hatamie, S ; Balasi, Z. M ; Ahadian, M. M ; Mortezazadeh, T ; Shams, F ; Hosseinzadeh, S ; Sharif University of Technology
    Editions de Sante  2021
    Abstract
    Herein, the graphene oxide (GO)/cobalt ferrite nanoparticles were used to apply the heat treatment on the breast cancer cell line of MCF7. The synthesized nanoparticles were evaluated before in vitro and in vivo studies, using transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), thermal property and relaxivity measurement. The nanoparticles showed a diameter of 5 nm with the ferrimagnetic property. Also, the nanoparticles were well distributed on the GO nanosheets. The related peaks of cobalt ferrite nanoparticles were approved by using XRD and XPS assays. During the in vitro investigations, IC50 with... 

    Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Ramedani, A ; Sabzevari, O ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Theranostic liposomes have recently found a broad range of applications in nanomedicine due to stability, the high solubility of biomacromolecules, bioavailability, efficacy, and low adverse effects. However, the limitations of liposomes concerning the short systemic circulation in the body, limited controllability of the release rate, and the inability of in vivo imaging remain challenging. Herein, the development of novel hybrid ultrasound-activated piezoelectric nanoparticles based on a hybrid liposome nanocarrier composed of poly(vinylidene fluoride‐trifluoroethylene), graphene quantum dots (GQDs), and Silibinin (a hydrophobic drug) is presented. The hybrid nanoparticles are an... 

    Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans

    , Article American Journal of Human Genetics ; Volume 108, Issue 2 , 2021 , Pages 324-336 ; 00029297 (ISSN) Fan, S ; Jiao, Y ; Khan, R ; Jiang, X ; Javed, A. R ; Ali, A ; Zhang, H ; Zhou, J ; Naeem, M ; Murtaza, G ; Li, Y ; Yang, G ; Zaman, Q ; Zubair, M ; Guan, H ; Zhang, X ; Ma, H ; Jiang, H ; Ali, H ; Dil, S ; Shah, W ; Ahmad, N ; Zhang, Y ; Shi, Q ; Sharif University of Technology
    Cell Press  2021
    Abstract
    Human infertility is a multifactorial disease that affects 8%–12% of reproductive-aged couples worldwide. However, the genetic causes of human infertility are still poorly understood. Synaptonemal complex (SC) is a conserved tripartite structure that holds homologous chromosomes together and plays an indispensable role in the meiotic progression. Here, we identified three homozygous mutations in the SC coding gene C14orf39/SIX6OS1 in infertile individuals from different ethnic populations by whole-exome sequencing (WES). These mutations include a frameshift mutation (c.204_205del [p.His68Glnfs∗2]) from a consanguineous Pakistani family with two males suffering from non-obstructive... 

    Graphene oxide negatively regulates cell cycle in embryonic fibroblast cells

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 6201-6209 Hashemi, E ; Akhavan, O ; Shamsara, M ; Ansari Majd, S ; Sanati, M. H ; Daliri Joupari, M ; Farmany, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Unique properties of graphene and its derivatives make them attractive in the field of nanomedicine. However, the mass application of graphene might lead to side effects, which has not been properly addressed in previous studies, especially with regard to its effect on the cell cycle. Methods: The effect of two concentrations (100 and 200 μg/mL) of nano-and microsized graphene oxide (nGO and mGO) on apoptosis, cell cycle, and ROS generation was studied. The effect of both sizes on viability and genotoxicity of the embryonic fibroblast cell cycle was evaluated. MTT and flow cytometry were applied to evaluate the effects of graphene oxide (GO) nanosheets on viability of cells.... 

    Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 271-279 ; 09277765 (ISSN) Hatamie, S ; Ahadian, M. M ; Ghiass, M. A ; Iraji zad, A ; Saber, R ; Parseh, B ; Oghabian, M. A ; Shanehsazzadeh, S ; Sharif University of Technology
    Elsevier 
    Abstract
    Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15 nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and... 

    Functional analyses of recombinant mouse hepcidin-1 in cell culture and animal model

    , Article Biotechnology Letters ; Volume 35, Issue 8 , August , 2013 , Pages 1191-1197 ; 01415492 (ISSN) Yazdani, Y ; Keyhanvar, N ; Kalhor, H. R ; Rezaei, A ; Sharif University of Technology
    2013
    Abstract
    Hepcidin is a peptide hormone that plays an important role in iron metabolism. We have produced a recombinant mouse hepcidin-1 by using baculovirus expression system. Its expression yield was 25 μg/ml when cell culture media were supplemented with a protease inhibitor cocktail. The recombinant mouse hepcidin-1 and synthetic human hepcidin-25 had similar effects on reducing ferroportin expression in J774A cell line and in peritoneal macrophages. However, synthetic human hepcidin-25 was more efficient than recombinant mouse hepcidin-1 in reducing iron concentration in blood circulation (p < 0.01)  

    Folic acid-decorated PH-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: in vitro studies

    , Article Frontiers in Pharmacology ; Volume 13 , 2022 ; 16639812 (ISSN) Rezaei, T ; Rezaei, M ; Karimifard, S ; Mahmoudi Beram, F ; Dakkali, M. S ; Heydari, M ; Afshari Behbahanizadeh, S ; Mostafavi, E ; Bokov, D. O ; Ansari, M. J ; Farasati Far, B ; Akbarzadeh, I ; Chaiyasut, C ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Breast cancer is the most common invasive cancer in women and the second leading cause of cancer death in women after lung cancer. The purpose of this study is a targeted delivery toward in vitro (on MCF7 and 4T1 breast cancer cell lines) through niosomes-based nanocarriers. To this end, different bioactive molecules, including hyaluronic acid (HA), folic acid (FA), and polyethylene glycol (PEG), were used and compared for surface modification of niosomes to enhance endocytosis. FA-functionalized niosomes (Nio/5-FU/FA) were able to increase cell cytotoxicity and reduce cell migration and invasion compared to PEG-functionalized niosomes (Nio/5-FU/PEG), and HA-functionalized niosomes... 

    Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer

    , Article ACS Applied Bio Materials ; Volume 5, Issue 3 , 2022 , Pages 1305-1318 ; 25766422 (ISSN) Ramezani Farani, M ; Azarian, M ; Heydari Sheikh Hossein, H ; Abdolvahabi, Z ; Mohammadi Abgarmi, Z ; Moradi, A ; Mousavi, S. M ; Ashrafizadeh, M ; Makvandi, P ; Saeb, M. R ; Rabiee, N ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The... 

    Fabrication of new magnetite-graphene nanocomposite and comparison of its laser-hyperthermia properties with conventionally prepared magnetite-graphene hybrid

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 572-581 ; 09284931 (ISSN) Tayyebi, A ; Moradi, S ; Azizi, F ; Outokesh, M ; Shadanfar, K ; Mousavi, S. S ; Sharif University of Technology
    Abstract
    A single step supercritical method was introduced for synthesis of “magnetite - reduced graphene oxide (M-rGO)” composite in supercritical methanol. Modified surface, smaller size, lesser cytotoxicity, and homogenous dispersion of Fe3O4 nanoparticles on the graphene surface were advantages of this new M-rGO composite in comparison to the materials synthesized by conventional wet chemical method (M-GO). Nanocomposites were injected in tissue equivalent phantoms of agarose gel in 10 mg/g dosage, and were irradiated by a 1600 mW laser beam at wavelength of 800–810 nm. The M-rGO and M-GO were found to be the most and the least efficient samples for increasing the temperature of the phantom. As... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Expression and function of c1orf132 long-noncoding rna in breast cancer cell lines and tissues

    , Article International Journal of Molecular Sciences ; Volume 22, Issue 13 , 2021 ; 16616596 (ISSN) Shafaroudi, A. M ; Sharifi Zarchi, A ; Rahmani, S ; Nafissi, N ; Mowla, S. J ; Lauria, A ; Oliviero, S ; Matin, M. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    miR-29b2 and miR-29c play a suppressive role in breast cancer progression. C1orf132 (also named MIR29B2CHG) is the host gene for generating both microRNAs. However, the region also expresses longer transcripts with unknown functions. We employed bioinformatics and experimental approaches to decipher C1orf132 expression and function in breast cancer tissues. We also used the CRISPR/Cas9 technique to excise a predicted C1orf132 distal promoter and followed the behavior of the edited cells by real-time PCR, flow cytometry, migration assay, and RNA-seq techniques. We observed that C1orf132 long transcript is significantly downregulated in triple-negative breast cancer. We also identified a... 

    Evaluation of radiogallium-labeled, folate-embedded superparamagnetic nanoparticles in fibrosarcoma-bearing mice

    , Article Journal of Cancer Research and Therapeutics ; Volume 8, Issue 2 , 2012 , Pages 204-208 ; 09731482 (ISSN) Hosseini Salekdeh, S. L ; Jalilian, A.R ; Yousefnia, H ; Shafaii, K ; Pouladian, M ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Context: Elevated expression of the folate receptor (FR) occurs in many human malignancies. Thus, folate targeting is widely utilized in drug delivery purposes specially using nano-radioactive agents. Aims: In this work, we report production and biological evaluation of gallium-67 labeled superparamagnetic iron oxide nanoparticles, embedded by folic acid (67 Ga-SPION-folate) complex especially in tumor-bearing mice for tumor imaging studies. Settings and Design: The structure of SPION-folate was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and foureir transform infrared spectroscopy (FT-IR) analyses. The radiolabeled SPION-folate formation was confirmed by... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)...