Loading...
Search for: nanocomposites
0.011 seconds
Total 1030 records

    In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    , Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites

    , Article Materials and Design ; Volume 52 , 2013 , Pages 881-887 ; 02641275 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6. vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4. vol%; then they... 

    Functional properties of biodegradable corn starch nanocomposites for food packaging applications

    , Article Materials and Design ; Volume 50 , 2013 , Pages 954-961 ; 02613069 (ISSN) Heydari, A ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this research, response surface methodology (RSM) was applied to study the effects of Na-Montmorillonite (Na-MMT) and glycerol on some functional properties of corn starch films. Films were prepared by casting method according to central composite design (CCD). Originally image processing technique was used in order to estimate transparency of the films. It was found that Na-MMT absorbed UV light from 216 to 266. nm. No antimicrobial activities were observed against Escherichia coli and Staphylococcus aureus. Contact angle analysis revealed hydrophilicity of starch films decreased utilizing nanoparticles and increased with plasticizer content. Increase in glycerol content decreased... 

    Effect of CVD parameters on hydrogen permeation properties in a nano-composite SiO 2-Al 2O 3 membrane

    , Article Journal of Membrane Science ; Volume 423-424 , 2012 , Pages 530-535 ; 03767388 (ISSN) Amanipour, M ; Ganji Babakhani, E ; Safekordi, A ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    2012
    Abstract
    Tubular ceramic membranes were synthesized by depositing a dense layer of silica-alumina on top of a multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was prepared by coating with a series of bohemite sols with certain particle sizes. Cross-sectional and surface images obtained from high resolution FESEM showed that the intermediate layer had a thickness of about 1μm and the top selective layer was uniform and dense with a thickness of less than 100nm. Permeance tests, which were carried out with H 2, CO 2, N 2 and CH 4 at a high temperature range of 923-1073K, indicated that gas permeation took place via different mechanisms through... 

    Influence of pulse parameters on electrocodeposition of Cr-Al2O3 nanocomposite coatings from trivalent chromium bath

    , Article International Heat Treatment and Surface Engineering ; Volume 6, Issue 4 , December , 2012 , Pages 178-184 ; 17495148 (ISSN) Salehi Doolabi, M ; Sadrnezhaad, S. K ; Salehi Doolabi, D ; Asadirad, M ; Sharif University of Technology
    2012
    Abstract
    Cr and Cr-Al2O3 coatings were electrodeposited from Cr(III) bath with both pulsating and direct current onto copper substrates. Pulsating current resulted in homogeneous films of higher Al2O3 content and lower particle agglomeration than the direct current. Differences were more tangible at shorter duty cycles and pulse frequencies. Pulsating current improved both microhardness and corrosion resistance. The presence of alumina nanoparticles resulted in greater current efficiency, higher film microhardness and better corrosion resistance. Maximum current efficiency, highest microhardness and densest electrodeposited coatings were achieved at current density of 20 A dm-2, duty cycle of 40% and... 

    The effects of nano Mgo on physical and mechanical properties of Al 2O3-SiC composites

    , Article Journal of Ceramic Science and Technology ; Volume 3, Issue 1 , 2012 , Pages 29-34 ; 21909385 (ISSN) Nemati, A ; Surani, F ; Abdizadeh, H ; Baharvandi, H. R ; Sharif University of Technology
    2012
    Abstract
    In this research, the effects of nano-sized MgO in Al2O 3-SiC composites were investigated. The overall changes in the density and mechanical properties of sintered samples (hardness, bending strength and toughness) were evaluated. After mixing, drying and uniaxial compaction of the powders, they were first heat-treated at low temperature in an electric furnace to remove any residuals. They were then heat-treated at high temperature (1700 °C) inside a graphite furnace in argon atmosphere for sintering (at normal and high pressure). The content of MgO in the Al 2O3-10 vol% SiC composite was 0, 500, 1000, and 1500 ppm. Thefracture toughness(KIC)of sintered composite with 10... 

    Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process

    , Article Tissue Engineering and Regenerative Medicine ; Volume 9, Issue 6 , 2012 , Pages 295-303 ; 17382696 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2012
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD),... 

    A study on the mechanism of electrodeposition of Ni/SiC composite coatings using impedance technique

    , Article ECS Transactions ; Volume 41, Issue 44 , 2012 , Pages 47-57 ; 19385862 (ISSN) ; 9781607683452 (ISBN) Sohrabi, A ; Dolati, A ; Electrodeposition; Sensor ; Sharif University of Technology
    2012
    Abstract
    Ni/SiC nanocomposite coatings were electrodeposited using Watts type bath and different SiC particle size. The electrodeposition behavior of Ni/SiC nanoelectrocomposites was studied using electrochemical techniques such as impedance spectroscopy (EIS) and voltammetry. In this study it was shown that SiC particles modify the EIS diagram and voltammograms as well as surface morphology of electrodeposited layers. Experimental results showed that SiC particles not only affect the formation of intermediate species and decrease charge transfer resistance but also increase the nucleation sites for nickel electrodeposition and thus affect the microstructure of electrodeposited Ni/SiC nanocomposites.... 

    Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants

    , Article Ceramics - Silikaty ; Volume 56, Issue 4 , 2012 , Pages 331-340 ; 08625468 (ISSN) Kamalian, R ; Yazdanpanah, A ; Moztarzadeh, F ; Ravarian, R ; Moztarzadeh, Z ; Tahmasbi, M ; Mozafari, M ; Sharif University of Technology
    2012
    Abstract
    In this research, bioactive glass (BG) of the type CaO-P2O 5-SiO2 and nanocrystalline forsterite (NF) bioceramic were successfully synthesized via sol-gel processing method. Heat-treatment process was done to obtain phase-pure nanopowders. After characterization of each sample, the nanocomposite samples were prepared by cold pressing method and sintered at 1000°C. The samples were fully characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) analyses. The average nanocrystallite size was determined using the Debye-Scherrer's formula 19.6 nm. The bioactivity was examined in vitro... 

    Shearing and mixing effects on synthesis and properties of organoclay/polyester nanocomposites

    , Article Rheologica Acta ; Volume 51, Issue 11-12 , November , 2012 , Pages 1007-1019 ; 00354511 (ISSN) Rajabian, M ; Samadfam, M ; Naderi, G ; Beheshty, M. H ; Sharif University of Technology
    2012
    Abstract
    Mixing of solid nanoparticles in viscous fluids is a key stage in synthesis of nanocomposites and can affect their final properties. A multi-step preparatory mixing is developed to synthesize the nanocomposites of layered silicate in thermosetting polymers. This study aims to investigate the influences of mixing conditions and steps taken to process the thermosetting nanocomposites on the viscoelastic properties of suspensions. We also examine subsequent influences of mixing on the microstructure and dispersion state of cured hybrids of organically modified clays in a polyester resin. The nanocomposites were prepared in a sequential mixing process developed for the model nanocomposites of... 

    Al-Al3Ti nanocomposite produced in situ by two-step hot-press sintering

    , Article IOP Conference Series: Materials Science and Engineering ; Volume 40, Issue 1 , 2012 ; 17578981 (ISSN) Nikfar, B ; Ghiabakloo, H ; Hosseini, H. R. M ; Mohammadi, A. V ; Sharif University of Technology
    2012
    Abstract
    Aluminum reinforced with a large amount (up to about 55 vol.%) of Al 3Ti particles can be fabricated from Al-20Ti elemental nanometer-sized powder mixture via in-situ two step hot press sintering (TSS). For production of intermetallic reinforced in-situ composite, TSS can provide elevated temperature to facilitate the formation of intermetallic phase in situ and hot consolidation to form a fully dense solid. The first step sintering was employed at a higher temperature to obtain an initial high density, and the second step was held at a lower temperature by isothermal sintering for more time than the first one to increase bulk density without significant grain growth. The optimum TSS regime... 

    MAO-derived hydroxyapatite/TiO 2 nanostructured multi-layer coatings on titanium substrate

    , Article Applied Surface Science ; Volume 261 , 2012 , Pages 37-42 ; 01694332 (ISSN) Abbasi, S ; Golestani Fard, F ; Rezaie, H. R ; Mirhosseini, S. M. M ; Sharif University of Technology
    2012
    Abstract
    In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by... 

    Production and characterization of UHMWPE/fumed silica nanocomposites

    , Article Polymer Composites ; Volume 33, Issue 10 , 2012 , Pages 1858-1864 ; 02728397 (ISSN) Ramazani, A ; Saremi, M. G ; Amoli, B. N ; Izadi, H ; Sharif University of Technology
    Wiley  2012
    Abstract
    Ultrahigh-molecular-weight polyethylene (UHMWPE)/fumed silica nanocomposites were prepared via in situ polymerization using a bi-supported Ziegler-Natta catalytic system. Nanocomposites with different nanoparticle weight fractions were produced in order to investigate the effect of fumed silica on thermal and mechanical properties of UHMWPE/fumed silica nanocomposites. The viscosity average molecular weight (M) of all samples including pure UHMWPE as the reference sample and nanocomposites were measured. Scanning electron microscope (SEM) images showed the homogenous dispersion of nanoparticles throughout the UHMWPE matrix while no nanoparticle cluster has been formed. Crystallization... 

    Effect of synthesis conditions on performance of a hydrogen selective nano-composite ceramic membrane

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , October , 2012 , Pages 15359-15366 ; 03603199 (ISSN) Amanipour, M ; Safekordi, A ; Ganji Babakhani, E ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    A hydrogen-selective nano-composite ceramic membrane was prepared by depositing a dense layer composed of SiO2 and Al2O 3 on top of a graded multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was made by dip-coating a macroporous α-alumina tubular support by a series of boehmite solutions to get a graded structure. Using DLS analysis, it was concluded that decreasing hydrolysis time and increasing acid concentration lead to smaller particle size of boehmite sols. XRD analysis was carried out to investigate the structure of intermediate layer and an optimized calcination temperature of 973 K was obtained. SEM images indicated the formation... 

    Morphology, rheology and mechanical properties of polypropylene/ethylene-octene copolymer/clay nanocomposites: Effects of the compatibilizer

    , Article Composites Science and Technology ; Volume 72, Issue 14 , 2012 , Pages 1697-1704 ; 02663538 (ISSN) Bagheri Kazemabad, S ; Fox, D ; Chen, Y ; Geever, L. M ; Khavandi, A ; Bagheri, R ; Higginbotham, C. L ; Zhang, H ; Chen, B ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The objective of this study was to investigate the effects of two compatibilizers, namely maleated polypropylene (PP-g-MA) and maleic anhydride grafted poly (ethylene-co-octene) (EOC-g-MA), on the morphology and thus properties of ternary nanocomposites of polypropylene (PP)/ethylene-octene copolymer (EOC)/clay nanocomposite. In this regard the nanocomposites and their neat polymer blend counterparts were processed twice using a twin screw extruder. X-ray diffraction, transmission electron microscopy, Energy dispersive X-ray spectroscopy, and scanning electron microscopy were utilized to characterize nanostructure and microstructure besides mechanical and rheological behaviors of the... 

    A new polypropylene/clay nanocomposite for replacement of engineering plastics in automotive application

    , Article Annual Technical Conference - ANTEC, Conference Proceedings ; Volume 1 , 2012 , Pages 102-109 ; 9781622760831 (ISBN) Zokaei, S ; Motamedi, P ; Bagheri, R ; Sharif University of Technology
    SPE  2012
    Abstract
    Polypropylene matrix nanocomposites reinforced with organoclay are investigated and their ability to replace some polyamide automotive parts is evaluated. This is so interesting from industrial point of view because of cost saving and ease of processing and recycling. This work is focused on different nanocomposite systems which are PP/nanoclay, and PP/PA/nanoclay. Also the effect of compatibilizer is presented here. Structure of these systems are studied by using WAXD, TEM and SEM. Mechanical properties of specimens are studied using uniaxial tensile test. As it will be demonstrated, nanoclay sheets tend to disperse in PA particles. On the other hand, introducing nanoclay into PP/PA blends... 

    Ceria reinforced nanocomposite solder foils fabricated by accumulative roll bonding process

    , Article Journal of Materials Science: Materials in Electronics ; Volume 23, Issue 9 , September , 2012 , Pages 1698-1704 ; 09574522 (ISSN) Roshanghias, A ; Kokabi, A. H ; Miyashita, Y ; Mutoh, Y ; Rezayat, M ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer  2012
    Abstract
    As one of the key technologies for high performance electronic devices, composite solders have been recently developed to improve thermal and mechanical properties of solder joints. In this study, accumulative roll bonding process was used as an effective alternative method for manufacturing high-strength, finely dispersed, void-free and highly uniform Sn-Ag-Cu/CeO 2 nanocomposite solders. Microstructural investigation of nanocomposite solders revealed that homogenous distribution of CeO 2 nanoparticle has been achieved and the eutectic as-cast morphology of the solder changed to recrystallized fine grained structure. As a result of severe plastic deformation during rolling, brittle and... 

    Thermal degradation behavior and kinetic analysis of ultra high molecular weight polyethylene based multi-walled carbon nanotube nanocomposites prepared via in-situ polymerization

    , Article Journal of Macromolecular Science, Part A: Pure and Applied Chemistry ; Volume 49, Issue 9 , 2012 , Pages 749-757 ; 10601325 (ISSN) Shariati, J ; Saadatabadi, A. R ; Khorasheh, F ; Sharif University of Technology
    T&F  2012
    Abstract
    Thermal degradation behavior of multi-wall carbon nanotubes (MWCNTs)/ultra high molecular weight polyethylene (UHMWPE) nanocomposites, with different nanotubes contents (0.5, 1.5 and 3.5 wt%) prepared via in-situ polymerization technique have been investigated using thermal gravimetric analysis (TGA). TGA spectra revealed that these nanocomposites had enhanced thermal stability and no significant mass loss (<0.4 wt%) occurred up to 350°C. Thermal degradation of these UHMWPE/MWCNT nanocomposites was investigated in terms of parameters such as the onset temperature of degradation (T 10), the decomposition temperature at 50% wt loss (T 50), the degradation temperature of maximum rate of the... 

    Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite

    , Article Journal of Bioactive and Compatible Polymers ; Volume 27, Issue 5 , January , 2012 , Pages 467-480 ; 08839115 (ISSN) Mehmanchi, M ; Shokrollahi, P ; Atai, M ; Omidian, H ; Bagheri, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Arms bearing ureido-pyrimidinone functional groups with self-association capability (through quadruple hydrogen bonds) were successfully grafted onto hydroxyapatite nanoparticles. The supramolecularly modified nanoparticles (nHApUPy) exhibited enhanced colloidal stability compared to the original hydroxyapatite nanoparticles and were uniformly dispersed in supramolecular polycaprolactone in PCL(UPy)2/HApUPy nanocomposites at different filler loadings. The combined atomic force microscopy, mechanical, and rheological analyses confirmed a high degree of compatibility of HApUPy nanoparticles with the polymer matrix. The temperature dependence of the supramolecular structure in PCL(UPy)2/HApUPy... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,...