Loading...
Search for: nanocrystallines
0.006 seconds
Total 107 records

    Synthesis and characterisation of nanostructured neodymium titanium oxides by sol-gel process: Controlling the phase composition, crystal structure and grain size

    , Article Materials Chemistry and Physics ; Volume 122, Issue 2-3 , 2010 , Pages 512-523 ; 02540584 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline neodymium titanium oxide thin films and powders with different phase compositions with mesoporous structure were produced by a straightforward particulate sol-gel route. The sols were prepared in various Nd:Ti molar ratios and they showed a narrow particle size distribution in the range 20-26 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders contained mixtures of Nd4Ti9O24, Nd2Ti4O11, Nd3Ti4O12 for titanium dominant powders (Nd:Ti ≤ 45:60), mixtures of Nd2TiO5 and Nd2O3 for neodymium dominant powders (Nd:Ti ≥ 75:25) and pure Nd3Ti4O12 phase for equal molar ratio of Nd:Ti, depending on the annealing temperature and Nd:Ti... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Development of nanocrystalline TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors: Controlling the physical and sensing properties

    , Article Sensors and Actuators, B: Chemical ; Volume 141, Issue 1 , 2009 , Pages 76-84 ; 09254005 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2009
    Abstract
    A systematic comparison of single and binary metal oxide TiO2, TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors with nanocrystalline and mesoporous microstructure, prepared by sol-gel route, was conducted. The gas sensitivity was increased by secondary phase introduction into TiO2 film via two mechanisms, firstly due to the inhibition of anatase-to-rutile transformation, since the anatase phase accommodates larger amounts of adsorbed oxygen, and secondly due to the retardation of grain growth, since the higher surface area provides more active sites for gas molecule adsorption. The binary metal oxide gas sensors exhibited a remarkable response towards low concentrations of CO and NO2 gases at... 

    Sol-gel derived nanocrystalline and mesoporous barium strontium titanate prepared at room temperature

    , Article Particuology ; Volume 9, Issue 3 , June , 2011 , Pages 235-242 ; 16742001 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Perovskite-type barium strontium titanate (BST) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol-gel route at room temperature. The prepared sol had a narrow particle size distribution of about 20 nm. X-ray diffraction (XRD) revealed that phase composition and preferable orientation growth of BST depended upon the annealing temperature. Transmission electron microscope (TEM) images showed that the crystallite size of the powders decreased with increasing annealing temperature from 8 nm at 25 °C down to 5 nm at 800 °C. Field emission scanning electron microscope (FE-SEM) analysis and atomic force microscope (AFM) images... 

    Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio

    , Article Journal of the European Ceramic Society ; Volume 30, Issue 4 , 2010 , Pages 947-961 ; 09552219 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline zinc titanate (ZnTiO3) thin films and powders with purity of 94% were produced at the low sintering temperature of 500 °C and the short sintering time of 1 h by a straightforward aqueous particulate sol-gel route. The effect of Zn:Ti molar ratio was studied on the crystallisation behaviour of zinc titanates. The prepared sols showed a narrow particle size distribution in the range 17-19 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders contained mixtures of the rhombohedral-ZnTiO3, cubic-ZnO, cubic-Zn2TiO4 phases, as well as the anatase-TiO2 and the rutile-TiO2 depending on the sintering temperature and Zn:Ti molar ratio.... 

    Investigation the Correlation Between Nanocrystallization and Consolidation Mechanisms and Their Effect on Magnetic Properties of Bulk Finemet Type Alloys

    , Ph.D. Dissertation Sharif University of Technology Gheiratmand, Tayebeh (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    Finemet soft magnetic alloys in the form of toroidally winded ribbons are not suitable for industrial applications where a large volume of magnetic materials is required. Production of Finemet bulk alloy by powder metallurgy techniques is an applicable method to produce complex component with isotropic magnetic properties which are the same as ribbons. In this research, Finemet bulk magnetic alloy with composition of has been produced by consolidation of amorphous powders obtained by milling of melt-spun ribbons. At the all stages, the structure and magnetic properties were studied using X-ray diffraction, differential scanning calorimetry, transmission electron microscopy, scanning... 

    Electropolishing effect on corrosion resistance of electrodeposited nanocrystalline Ni-Mo alloy coatings in NaCl solution

    , Article ECS Transactions ; Volume 45, Issue 19 , 2013 , Pages 65-76 ; 19385862 (ISSN) ; 9781623320355 (ISBN) Roozbehani, B ; Allahyarzadeh, M. H ; Ashrafi, A ; Shadizadeh, S. R ; Seddighian, A ; Sharif University of Technology
    2013
    Abstract
    The aim of current research is to investigate the substrate electropolishing effect on corrosion resistance of Ni-Mo thin films. For this purpose, corrosion resistance of coatings deposited on mild steel substrates, that was electropolished or mechanically polished, have been compared in 3.5 wt.% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The structural properties of Ni-Mo thin films were evaluated using X-ray diffraction (XRD) and their morphology, microstructure and chemical composition were also investigated using scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). Temperature and acidity of deposition... 

    Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants

    , Article Ceramics - Silikaty ; Volume 56, Issue 4 , 2012 , Pages 331-340 ; 08625468 (ISSN) Kamalian, R ; Yazdanpanah, A ; Moztarzadeh, F ; Ravarian, R ; Moztarzadeh, Z ; Tahmasbi, M ; Mozafari, M ; Sharif University of Technology
    2012
    Abstract
    In this research, bioactive glass (BG) of the type CaO-P2O 5-SiO2 and nanocrystalline forsterite (NF) bioceramic were successfully synthesized via sol-gel processing method. Heat-treatment process was done to obtain phase-pure nanopowders. After characterization of each sample, the nanocomposite samples were prepared by cold pressing method and sintered at 1000°C. The samples were fully characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) analyses. The average nanocrystallite size was determined using the Debye-Scherrer's formula 19.6 nm. The bioactivity was examined in vitro... 

    Synthesis of thoria nanoparticles via the hydrothermal method in supercritical condition

    , Article Materials Letters ; Volume 81 , 2012 , Pages 99-101 ; 0167577X (ISSN) Moeini, M ; Malekzadeh, A ; Ahmadi, S. J ; Hosseinpour, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Thorium dioxide (thoria) nano-particle was synthesized by employing supercritical water (SCW) as an excellent reaction environment for hydrothermal crystallization of metal oxide particles. This method is ideal for production of ultrafine powder having controlled stoichiometry, high quality, purity and crystallinity. The nano-crystalline thoria was prepared in a stainless steel (316 L) autoclave, fed with an aqueous solution of Th(NO 3) 4.5H 2O as a reactant and took place under SCW condition up to 450 °C for 45 min. The product was recovered and characterized by X-Ray Diffraction (XRD), Thermal Gravimetry Analysis (TG/DTA) and Brunauer, Emmett and Teller (BET) surface area analysis. The... 

    Photoresponse and H2 production of topographically controlled PEG assisted Sol-gel WO3 nanocrystalline thin films

    , Article International Journal of Hydrogen Energy ; Volume 36, Issue 21 , October , 2011 , Pages 13461-13472 ; 03603199 (ISSN) Naseri, N ; Yousefzadeh, S ; Daryaei, E ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    WO3 thin films were fabricated by sol-gel method using polyethylene glycol (PEG) as dispersing agent. Physical and photoelectrochemical properties of the synthesized nanocrystalline films were studied by varying weight ratio of PEG to tungsten precursor (x). Based on AFM observations and statistical modeling of the WO3 surface, the thickness of the films increased by increasing the amount of x with a nearly linear fashion while the surface roughness reached to a saturated value. However, the film synthesized with x = 4 showed a chaotic surface behavior. Optical analysis revealed that by increasing the x, transmittance of the films decreased while their band gap energies remained unchanged.... 

    Densification behavior and mechanical properties of biomimetic apatite nanocrystals

    , Article Current Nanoscience ; Volume 7, Issue 5 , 2011 , Pages 776-780 ; 15734137 (ISSN) Eskandari, A ; Aminzare, M ; Hassani, H ; Barounian, H ; Hesaraki, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline hydroxyapatite (nHA) of 50 nm average diameter and length to diameter ratio of >3 was synthesized by biomimetic method. Non-isothermal sintering improved densification behavior and mechanical properties of apatite to 0.88 maximum fractional density, 70MPa bending strength, 148MPa compressive strength and 2.53GPa microhardness at sintering temperature of 1250°C. Higher sintering temperatures resulted in the decomposition of the apatite and in-situ biphasic calcium phosphate HAP/TCP formation. This process lowered apatite densification and weakened mechanical properties of the sintered specimen. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and field emission... 

    Structural characteristics and desorption properties of nanostructured MgH2 synthesised by high energy mechanical milling

    , Article Powder Metallurgy ; Volume 54, Issue 4 , 2011 , Pages 480-483 ; 00325899 (ISSN) Simchi, H ; Kaflou, A ; Simchi, A ; Sharif University of Technology
    2011
    Abstract
    The effect of particle size, lattice strain and crystallite size on the hydrogen desorption properties of nanocrystalline magnesium hydride powder was investigated. Commercial MgH2 powder was milled in a Spex 8000M up to 16 h and its structural evolution and desorption characteristics at different time intervals were examined using various analytical techniques. At the early stage of milling, the formation of metastable γ-MgH2 phase was noticed. While the crystallite size gradually decreased to 12 nm with increasing the milling time, the accumulated lattice strain gained a maximum value of 0·9% after 4 h milling. The highest drop in the desorption temperature (∼100°C) was attained at the... 

    Phase formation during sintering of nanocrystalline zirconia/stainless steel functionally graded composite layers

    , Article Materials Letters ; Volume 65, Issue 3 , February , 2011 , Pages 523-526 ; 0167577X (ISSN) Dourandish, M ; Simchi, A ; Hokamoto, K ; Tanaka, S ; Sharif University of Technology
    Abstract
    Microstructural development and phase formation at the interface of yttria stabilized zirconia (3Y-TZP)/430L stainless steel composite layers produced by co-sintering method were studied by SEM, HRTEM, micro-focus XRD, and EPMA. Formation of a rich chromium boundary layer at the interface was noticed, which revealed Cr aggregation at the interface at the elevated temperatures. Misfit dislocations were also observed at the joint interface to tackle the mismatch crystallographic orientations between the ceramic and metal layer. The results of the micro-focus XRD showed formation of no new phases at the boundary zone. Microstructural studies also revealed a retarded grain growth in the... 

    The influence of surface nanocrystallization induced by shot peening on corrosion behavior of niti alloy

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 8 , August , 2015 , Pages 3093-3099 ; 10599495 (ISSN) Olumi, S ; Sadrnezhaad, S. K ; Atai, M ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Nickel-titanium (NiTi) shape memory alloys have been widely used as implant materials, due to their superior shape memory properties and similar mechanical behavior to bone tissue. The presence of nickel on the surface of nickel-titanium alloy and release of this ion in the body environment will result in some allergic reactions. In current study, we used shot pinning process to produce nanocrystalline nickel-titanium alloy with increased corrosion resistance. Field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) analysis, and atomic force microscopy were employed to investigate the surface features of samples. The quantitative chemical analysis of NiTi and modified... 

    Optimization of parameters for synthesis of mfi nanoparticles by taguchi robust design

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , 2010 , Pages 902-910 ; 09307516 (ISSN) Torkman, R ; Soltanieh, M ; Kazemian, H ; Sharif University of Technology
    2010
    Abstract
    MFI-type zeolite was successfully synthesized by hydrothermal crystallization of clear synthesis mixtures. A statistical experimental design method (the Taguchi method with an L8 orthogonal array) was implemented to optimize the experimental conditions for the preparation of MFI nanocrystals with respect to particle size and distribution as the desirable properties. In the Taguchi experimental design, crystallization temperature, water content, template/silica molar ratio, aluminum content, as well as the presence of alkaline cations were chosen as significant parameters affecting the properties. It was shown that water and aluminum content of the synthesis solution were the most important... 

    Electrodeposition of nanocrystalline Zn/Ni multilayer coatings from single bath: influences of deposition current densities and number of layers on characteristics of deposits

    , Article Applied Surface Science ; Volume 404 , 2017 , Pages 101-109 ; 01694332 (ISSN) Bahadormanesh, B ; Ghorbani, M ; Lotfi Kordkolaei, N ; Sharif University of Technology
    Abstract
    Zn/Ni nanocrystalline multilayer coatings were electrodeposited using single bath method and switching current densities. Effect of deposition current densities (i1 and i2) and number of layers (n) on composition, surface morphology and roughness, microhardness, phase structure and corrosion resistance of Zn/Ni multilayers were studied and compared with that of single layer. Analyzing and optimizing the influences of mentioned parameters on corrosion resistance of multilayers carried out through Response Surface Methodology. The model based on RSM results demonstrated that improvement in corrosion resistance due to increase in “difference of deposition current densities” was more effective... 

    Iron-borosilicate soft magnetic composites: the correlation between processing parameters and magnetic properties for high frequency applications

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 241-250 ; 03048853 (ISSN) Gheiratmand, T ; Madaah Hosseini, H .R ; Seyed Reihani, S. M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the... 

    Friction behavior of nanocrystalline nickel near the Hall-Petch breakdown

    , Article Tribology International ; Volume 107 , Volume 107 , 2017 , Pages 18-24 ; 0301679X (ISSN) Chamani, M ; Farrahi, G. H ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Large-scale molecular dynamics simulations are carried out to investigate the friction behavior of nanocrystalline nickel (Ni) at low temperature. Grain sizes ranging from 4–11 nm are used to explore the behavior of nanocrystalline Ni near the Hall-Petch breakdown. Effects of grain size, grain morphology and scratch depth on coefficient of friction (COF) and deformation mechanism of nanocrystalline Ni are investigated. Reduction of the COF with the refinement of grain size in nanocrystalline nickel is observed, however, for a grain size of 5 nm this trend is observed to be reversed. It is also found that scratch depth can influence the estimation of friction behavior of nanocrystalline... 

    Microstructural characterization and enhanced hardness, wear and antibacterial properties of a powder metallurgy SiC/Ti-Cu nanocomposite as a potential material for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 8 , 2019 , Pages 10603-10611 ; 02728842 (ISSN) Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, SiC/Ti–Cu nanocomposite was fabricated by mechanical alloying and sintering process. Effects of SiC nano-reinforcement on phase transformation, microstructure and tribological and antibacterial properties Ti–Cu intermetallic alloy were studied. The microstructure of the powders and sintered materials was investigated using X-ray diffraction, and scanning/transmission electron microscopy. The results exhibited the formation of major TiCu and TiCu 4 , and minor Ti 2 Cu and Ti 2 Cu 3 nanocrystalline phases in the sintered Ti–Cu and SiC/Ti–Cu samples. With the addition of the nanoparticles, the amount of TiCu 4 phase increased. Reinforcing Ti–Cu intermetallic alloy by SiC... 

    Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal of organic pollutants from aqueous media

    , Article Advanced Powder Technology ; Volume 31, Issue 8 , 2020 , Pages 3328-3341 Azarniya, A ; Zekavat, M ; Soltaninejad, M ; Bakhshandeh, F ; Reza Madaah Hosseini, H ; Kashani, S ; Amutha, C ; Khatiboleslam Sadrnezhaad, S ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Recently, aluminum titanate (Al2TiO5)-based nanostructures have been proved to serve as an efficient photocatalytic material with satisfactory photodegradation capacity. In this study, the citrate sol–gel method was used to synthesize these nanostructures and inspect the significant impacts of nitrogen-doping-originated crystalline defects on their photocatalytic performance in some details for the first time. The results indicated that the penetration of nitrogen atoms into AT crystal lattice, depending on the nitriding time and temperature, can induce a great deal of the residual stress and result in propagating the existing cracks and breaking down the particles. The XPS and FTIR results...