Loading...
Search for: nanocrystallines
0.007 seconds
Total 107 records

    Effects of SiC nanoparticles on synthesis and antimicrobial activity of TiCu nanocrystalline powder

    , Article Ceramics International ; Volume 46, Issue 1 , January , 2020 , Pages 114-120 Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Effects of SiC nanoparticles addition on synthesis and antibacterial properties of TiCu nanocrystalline powder prepared through high energy mechanical milling were studied. The results showed that the synthesis of TiCu powder in the presence of the nanoparticles was accelerated and after mechanical alloying for 20 h, a TiCu/SiC nanocrystalline powder with the crystallite size <5 nm, and 3.3% lattice micro-strain obtained. Further milling resulted in fully amorphous TiCu intermetallic alloy with more uniform distribution of SiC nanoparticles. The antibacterial activity of the synthesized powders was investigated by disk diffusion test. The TiCu/SiC nanocomposites showed enhanced antibacterial... 

    Compaction simulation of crystalline nano-powders under cold compaction process with molecular dynamics analysis

    , Article Powder Technology ; Volume 373 , August , 2020 , Pages 741-753 Khoei, A. R ; Sameti, A. R ; Mofatteh, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In this paper, the uniaxial cold compaction process of metal nano-powders is numerically analyzed through the Molecular Dynamics (MD) method. The nano-powders consist of nickel and aluminum nano-particles in the pure and mixed forms with distinctive contributions. The numerical simulation is performed using the different number of nano-particles, mixing ratios of Ni and Al nano-particles, compaction velocities, and ambient temperatures in the canonical ensemble until the full-dense condition is achieved. In the MD analysis, the inter-atomic interaction between metal nano-particles is modeled by the many-body EAM potential, and the interaction between frictionless rigid die-walls and metal... 

    Measurement modulus of elasticity related to the atomic density of planes in unit cell of crystal lattices

    , Article Materials ; Volume 13, Issue 19 , 2020 , Pages 1-17 Rabiei, M ; Palevicius, A ; Dashti, A ; Nasiri, S ; Monshi, A ; Vilkauskas, A ; Janusas, G ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Young’s modulus (E) is one of the most important parameters in the mechanical properties of solid materials. Young’s modulus is proportional to the stress and strain values. There are several experimental and theoretical methods for gaining Young’s modulus values, such as stress–strain curves in compression and tensile tests, electromagnetic-acoustic resonance, ultrasonic pulse echo and density functional theory (DFT) in different basis sets. Apparently, preparing specimens for measuring Young’s modulus through the experimental methods is not convenient and it is time-consuming. In addition, for calculating Young’s modulus values by software, presumptions of data and structures are needed.... 

    Desorption properties of nanostructured MgH2 synthesized by high-energy mechanical milling

    , Article European International Powder Metallurgy Congress and Exhibition, Euro PM 2008, Mannheim, 29 September 2008 through 1 October 2008 ; Volume 2 , 2008 , Pages 351-356 ; 9781899072033 (ISBN) Simchi, H ; Simchi, A ; Kaflou, A ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2008
    Abstract
    The hydrogen desorption properties of nanocrystalline magnesium hydride processed by high-energy mechanical milling was investigated. MgH2 powder was milled for various times (up to 16 h) under a high purity argon atmosphere and the effect of milling on the particle size and morphology, grain refinement, lattice strain, and desorption temperature was studied. It was shown that accumulated lattice strain combined with nanometric grain structure significantly decrease the desorption temperature. The effect of powder particle size was found to be of less importance. The lowest desorption temperature was obtained after 4 h high-energy milling. Nanostructured magnesium hydride with grain size of... 

    Comparison of single and binary oxide sol-gel gas sensors based on titania

    , Article Solid State Sciences ; Volume 10, Issue 7 , 2008 , Pages 884-893 ; 12932558 (ISSN) Mohammadi, M. R ; Fray, D. J ; Ghorbani, M ; Sharif University of Technology
    Elsevier Masson SAS  2008
    Abstract
    A systematic comparison of single and binary metal oxides TiO2, TiO2-Ga2O3 and TiO2-Er2O3 thin film gas sensors with nanocrystalline and mesoporous microstructure, prepared by a new particulate sol-gel route, was conducted. The gas sensitivity was increased by introduction of Ga2O3 and Er2O3 into TiO2 film via two mechanisms, firstly through the inhibition of anatase-to-rutile transformation, since the anatase phase accommodates larger amounts of adsorbed oxygen, and secondly through the retardation of grain growth, since the higher surface area provides more active sites for gas molecule adsorption. The binary metal oxide gas sensors exhibited a remarkable response towards low... 

    Influence of secondary oxide phases on microstructural and gas sensitive properties of nanostructured titanium dioxide thin films

    , Article Multi-functional Materials and Structures - International Conference on Multifunctional Materials and Structures, Hong Kong, P.R., 28 July 2008 through 31 July 2008 ; Volume 47-50 PART 1 , 2008 , Pages 41-44 ; 10226680 (ISSN); 0878493786 (ISBN); 9780878493784 (ISBN) Mohammadi, M. R ; Ghorbani, M ; Fray, D. J ; Sharif University of Technology
    Trans Tech Publications  2008
    Abstract
    A systematic comparison of single and binary metal oxide T1O2, TiO2-Ga2O3, TiO2-Er 2O3 and TiO2-Ta2O5 gas sensors with nanocrystalline and mesoporous microstructure, prepared by sol-gel route, was conducted. The gas sensitivity was increased by secondary phase introduction into TiO2 film via two mechanisms, firstly through the inhibition of anatase-to-rutile transformation, since the anatase phase accommodates larger amounts of adsorbed oxygen, and secondly through the retardation of grain growth, since the higher surface area provides more active sites for gas molecule adsorption. The binary metal oxides exhibited a remarkable response towards low concentrations of CO and NO2 gases at low... 

    Effects of constrained groove pressing, severe shot peening and ultrasonic nanocrystal surface modification on microstructure and mechanical behavior of S500MC high strength low alloy automotive steel

    , Article Applied Surface Science ; Volume 538 , 2021 ; 01694332 (ISSN) Karademir, I ; Celik, M. B ; Husem, F ; Maleki, E ; Amanov, A ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    S500MC high strength low alloy automotive steel is exposed to bulk severe plastic deformation (SPD) via constrained groove pressing (CGP) and surface severe plastic deformation (S2PD) via severe shot peening (SSP) and ultrasonic nanocrystal surface modification (UNSM). SSP and UNSM could create a nanocrystallization layer till 50–100 µm away from outmost surface. EBSD investigations showed average nano-grain size obtained via SSP and UNSM was found to be below 100 nm regime. The strength was improved via 1st to 4th pass of CGP, but elongation percentage decreased abruptly. UNSM achieves both strength-ductility improvement with gradient structure. SSP improves the total elongation however a... 

    In situ synthesis of nanocrystalline Al6063 matrix nanocomposite powder via reactive mechanical alloying

    , Article Materials Science and Engineering A ; Volume 527, Issue 18-19 , 2010 , Pages 4897-4905 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2010
    Abstract
    In this work, nanocrystalline Al6063 composite powder reinforced with nanometric oxide ceramic particles was synthesized via an in situ solid-gas reaction during high-energy mechanical alloying under a mixture of argon-oxygen atmosphere. The effect of oxygen volume fraction on the morphological evolution and microstructural changes during mechanical alloying was studied by various analytical techniques including optical and electron microscopy, X-ray diffraction, laser particle size analysis, apparent density measurement, and microhardness test. The reactive mechanical alloying resulted in the formation of amorphous Al- and Al-Mg-Si-Fe oxides with a size range of 40-100. nm and volume... 

    Mesoporous submicrometer TiO 2 hollow spheres as scatterers in dye-sensitized solar cells

    , Article ACS Applied Materials and Interfaces ; Volume 4, Issue 6 , 2012 , Pages 2964-2968 ; 19448244 (ISSN) Dadgostar, S ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2012
    Abstract
    Hierarchical submicrometer TiO 2 hollow spheres with outer diameter of 300-700 nm and shell thickness of 200 nm are synthesized by liquid phase deposition of TiO 2 over carbon microspheres as sacrificial templates. The final TiO 2 hollow spheres are applied as a scattering layer on top of a transparent nanocrystalline TiO 2 film, serving as the photoanode of a dye-sensitized solar cell (DSC). In addition to efficient light scattering, the mesoporous structure of TiO 2 hollow spheres provides a high surface area, 74 m 2/g, which allows for higher dye loading. This dual functioning suggests that TiO 2 hollow spheres may be good replacements for conventional TiO 2 spheres as scatterers in DSCs.... 

    Optimal Ag concentration for H2 production via Ag:TiO 2 nanocomposite thin film photoanode

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 4 , Feb , 2012 , Pages 3056-3065 ; 03603199 (ISSN) Naseri, N ; Kim, H ; Choi, W ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    TiO2 thin films containing different concentrations of Ag nanoparticles have been synthesized by sol-gel method. According to UV-visible spectra, presence of an intense surface plasmon resonance peak at 490 nm of wavelength indicated formation of silver nanoparticles in the TiO2 films. Based on atomic force microscopy (AFM) analysis, the surface roughness and the effective surface ratio increased by increasing the Ag mol%. Moreover, scanning electron microscopy (SEM) images showed formation of Ag nanoparticles on the surface for the samples containing high Ag concentration. X-ray diffraction (XRD) patterns revealed that the size of Ag nanocrystals increased by increasing the Ag content in... 

    The effect of microstructure on the photocatalytic properties of TiO2

    , Article Advanced Materials Research, 26 October 2009 through 29 October 2009 ; Volume 264-265 , 2011 , Pages 1340-1345 ; 10226680 (ISSN) ; 9783037850534 (ISBN) Khameneh Asl, S ; Kianpour Rad, M ; Sadrnezhaad, S. K ; Vaezi, M. R ; Sharif University of Technology
    2011
    Abstract
    Titanium dioxide is a cheap, chemically stable and non-toxic material. However its photocatalytic properties are unstable and it is a modest semiconductor and a mediocre insulator. For several applications it would be interesting to make it either more insulating or more conducting. The goal of this work was to modify the photocatalytic properties of nano-crystalline TiO2 powders by wet chemical routes and hydrothermal methods to understand the mechanism leading to these modifications The principal factors that influence the photocatalytic properties are on the one hand the concentration and nature of the chemical and physical conditions in TiO2, and on the other hand the morphology of the... 

    Synthesis of nanostructured and nanoporous TiO2-AgO mixed oxide derived from a particulate sol-gel route: Physical and sensing characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 8 , August , 2011 , Pages 2481-2492 ; 10735623 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO... 

    Visible photoenhanced current-voltage characteristics of Au : TTT iO2 nanocomposite thin films as photoanodes

    , Article Journal of Physics D: Applied Physics ; Volume 43, Issue 10 , 2010 ; 00223727 (ISSN) Naseri, N ; Amiri, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    In this investigation, the effect of annealing temperature and concentration of gold nanoparticles on the photoelectrochemical properties of sol-gel deposited Au : TiO2 nanocomposite thin films is studied. Various gold concentrations have been added to the TiO2 thin films and their properties are compared. All the deposited samples are annealed at different temperatures. The optical density spectra of the films show the formation of gold nanoparticles in the films. The optical bandgap energy of the Au : TiO2 films decreases with increasing Au concentration. The crystalline structure of the nanocomposite films is studied by x-ray diffractometry indicating the formation of gold nanocrystals in... 

    Sol-gel synthesis of Mn1.5Co1.5O4 spinel nano powders for coating applications

    , Article Materials Research Bulletin ; Volume 102 , 2018 , Pages 180-185 ; 00255408 (ISSN) Hashemi, S. T ; Dayaghi, A. M ; Askari, M ; Gannon, P. E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Mn1.5Co1.5O4 oxide spinels are widely used as protective coatings for stainless steel interconnects within planar solid oxide fuel cell stacks. Containing both cubic and tetragonal crystalline phases, these Mn/Co oxide spinels exhibit favorable thermal stability and electronic conductivity for the SOFC interconnect application. Slurry-based coating applications of Mn/Co oxides require precursor powders, which can benefit from being nano-structured. In this study, the sol-gel synthesis of nanocrystalline Mn1.5Co1.5O4 spinel is investigated. The decomposition of sol-gel precursors, as well as the crystalline phase structures and microstructures of the product Mn1.5Co1.5O4 are characterized by... 

    Effect of Fe-Containing supports prepared by a novel sol–gel method in the co methanation reaction: co elimination and synthetic natural gas production

    , Article Energy Technology ; Volume 7, Issue 10 , 2019 ; 21944288 (ISSN) Jalali, R ; Rezaei, M ; Nematollahi, B ; Baghalha, M ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Herein, the CO methanation reaction is studied over Ni/Fe–Al mixed oxides with various Fe and Al contents. The mesoporous nanocrystalline supports are prepared by a novel sol–gel process using propylene oxide as a gelation agent. The deposition–precipitation method is used for the deposition of nickel on the catalyst support. The samples are characterized by Brunauer–Emmett–Teller (BET), X-ray diffractometry (XRD), temperature programmed reduction (TPR), temperature programmed oxidation (TPO), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that increasing the iron content and reducing the Al percentage in the catalyst support reduces the... 

    Preparation and investigations on the thermal, structural and magnetic behavior of Co-Ce substituted Ni nanoferrites

    , Article Materials Research Express ; Volume 6, Issue 11 , 2019 ; 20531591 (ISSN) Qamar, S ; Yasin, S ; Ramzan, N ; Iqbal, T ; Niaz Akhtar, M ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Co-Ce doped Ni nanocrystalline ferrites having composition Ni0.8Ce0.2CoxFe2-xO4 with x = 0.00, 0.25, 0.50, 0.75, 1.00 were fabricated by sol gel auto combustion method. Synthesized samples were investigated by thermal gravimetric and differential thermal analysis (TGA-DTA), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis (EDX) and vibrating sample magnetometer (VSM) to study the phase, vibrational modes, structure, surface analysis and magnetic properties respectively. Structural parameters (lattice parameters, cell volume, crystallite size and micro strains) were also calculated from XRD recorded data.... 

    Structural Rietveld refinement and magnetic features of prosademium (Pr) doped Cu nanocrystalline spinel ferrites

    , Article Ceramics International ; Volume 45, Issue 8 , 2019 , Pages 10187-10195 ; 02728842 (ISSN) Niaz Akhtar, M ; Babar, M ; Qamar, S ; ur Rehman, Z ; Azhar Khan, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Pr doped spinel nanoferrites having following composition Cu Pr x Fe 2-x O 4 (x = 0, 0.25, 0.50, 0.75, 1.00) were synthesized using sol-gel route. Prosademium (Pr) which is a rare earth metal was doped to tailor the properties of the Cu spinel nanoferrites. Characterization tools such as FTIR, XRD, FESEM and VSM were employed to investigate the phase, absorption bands, structure, microstructure and magnetic properties. FTIR was used to see the absorption bands and force constants of the Pr doped Cu spinel nanoferrites. Crystallite size, lattice parameters, cell volume and micro strains were determined from XRD data. Bulk density, X-ray density and porosity of the Pr doped Cu spinel... 

    Structural rietveld refinement, morphological and magnetic features of Cu doped Co–]Ce nanocrystalline ferrites for high frequency applications

    , Article Physica B: Condensed Matter ; Volume 561 , 2019 , Pages 121-131 ; 09214526 (ISSN) Niaz Akhtar, M ; Khan, A. A ; Naeem Akhtar, M ; Ahmad, M ; Azhar Khan, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Copper (Cu) substituted Co–]Ce nanoferrites with nominal composition of Co 1-x Cu x Ce 0.05 Fe 1.95 O 4 (x = 0.00, 0.25, 0.50, 0.75, 1.00) were prepared by sol-gel route. The sintering of the Cu doped Co–]Ce nanoferrites was done at 700 °C to investigate the desired properties of the Cu doped Co–]Ce nanoferrites. The combination of transition metal (Cu) and rare earth (Ce) were employed to tailor the characteristics of the spinel ferrites. The constant ratio of rare earth and systematic doping of Cu in Co ferrite was incorporated to see the effects of these ions in spinel ferrite. FTIR, FESEM, XRD and VSM were used to study the vibrational bands, phase, morphology, structure and magnetic... 

    Effect of copper on the thermal stability and non-isothermal crystallization behavior of Al 86 Ni 10-x Cu x RE 4 (x = 0.5–2.5) amorphous alloys prepared by melt spinning

    , Article Journal of Non-Crystalline Solids ; Volume 506 , 2019 , Pages 46-50 ; 00223093 (ISSN) Mansouri, M ; Varahram, N ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Microstructural features, thermal stability and crystallization kinetics of various melt spun Al-based alloys containing transition metals (TM = Ni, Cu) and Ce-based rare earth metals (MM: Misch Metal) were investigated via X-ray diffractometry (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). It is shown that the extended topological instability of Egami-Waseda model (λ criterion) is a useful tool to predict the crystallization behavior of the prepared alloys. FCC-Al nanoparticles are formed during the initial crystallization process. Calculation of the apparent activation energy using the Kissinger method indicates that partial replacement of... 

    Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 189 , May , 2020 Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The demands for high-performance biomaterials are driving the development of new metallic alloys with improved mechanical and biological responses. In this study, a nanocrystalline Ti-Cu intermetallic alloy was prepared by a powder metallurgy route, and its application as an orthopedic material was evaluated by the microstructural, mechanical, corrosion, antibacterial, cytotoxicity and osseointegration examinations. Microstructural characterization revealed the formation of TiCu and Ti2Cu3 as major phases with 23 nm grain size in the structure of the alloy. The synthesized alloy exhibited ultra-high hardness of 10 GPa, acceptable toughness of 8.14 MPam1/2, a ∼98 % anti-bacterial rate against...