Loading...
Search for: nanofluidics
0.005 seconds
Total 238 records

    Enhanced local viscosity around colloidal nanoparticles probed by equilibrium molecular dynamics simulations

    , Article Journal of Chemical Physics ; Volume 155, Issue 17 , 2021 ; 00219606 (ISSN) Rabani, R ; Saidi, M. H ; Joly, L ; Merabia, S ; Rajabpour, A ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Nanofluids - dispersions of nanometer-sized particles in a liquid medium - have been proposed for a wide variety of thermal management applications. It is known that a solid-like nanolayer of liquid of typical thicknesses of 0.5-1 nm surrounding the colloidal nanoparticles can act as a thermal bridge between the nanoparticle and the bulk liquid. Yet, its effect on the nanofluid viscosity has not been elucidated so far. In this article, we compute the local viscosity of the nanolayer using equilibrium molecular dynamics based on the Green-Kubo formula. We first assess the validity of the method to predict the viscosity locally. We apply this methodology to the calculation of the local... 

    A new wind turbine driven trigeneration system applicable for humid and windy areas, working with various nanofluids

    , Article Journal of Cleaner Production ; Volume 296 , 2021 ; 09596526 (ISSN) Rostami, S ; Rostamzadeh, H ; Fatehi, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Various methods are devised to capture renewable energy or waste heat from different sectors, where among all, waste heat capturing from the generator of a wind turbine through the cooling process for freshwater and cooling production is paid less attention in Iran, in spite of the fact that many wind farms in Iran are in hot and humid regions and the residents nearby the farms desperately need freshwater and cooling load. To surmount this problem, waste heat extraction from a wind turbine (Enercon 70 Model) for freshwater and cooling production is proposed in this study. Instead of dissipating this thermal energy of the wind turbine into the environment, it can be used for freshwater and... 

    The numerical investigation of the heat transport in the nanofluids under the impacts of magnetic field: applications in industrial zone

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Adnan ; Khan, U ; Ahmed, N ; Mohyud-Din, S. T ; Khan, I ; Fayz-Al-Asad, M ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are incorporated over the plates that are electrically conducting. The nondimensional flow model is then treated analytically (VPM), and the results are sketched against the preeminent flow parameters. The remarkable heat transfer in the nanofluid is noticed against the Eckert and Prandtl numbers, whereas the... 

    The numerical investigation of the heat transport in the nanofluids under the impacts of magnetic field: applications in industrial zone

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Adnan ; Khan, U ; Ahmed, N ; Mohyud Din, S. T ; Khan, I ; Fayz Al Asad, M ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are incorporated over the plates that are electrically conducting. The nondimensional flow model is then treated analytically (VPM), and the results are sketched against the preeminent flow parameters. The remarkable heat transfer in the nanofluid is noticed against the Eckert and Prandtl numbers, whereas the... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; Volume 42, Issue 22 , 2021 , Pages 1926-1948 ; 01457632 (ISSN) Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    Retraction notice to “Numerical study on free convection in a U-shaped CuO/water nanofluid-filled cavity with different aspect ratios using double-MRT lattice Boltzmann” [Therm. Sci. Eng. Progr. 14(2019), 100373]

    , Article Thermal Science and Engineering Progress ; Volume 21 , 2021 ; 24519049 (ISSN) Hasanzadeh Fard, A ; Hooshmand, P ; Mohammaei, M ; Ross, D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Concern has been raised about the identity of the author “David Ross” as the listed institution has denied the affiliation of a person with this name. Further inquiry revealed that the names of the co-authors were added to the revised version of the article without notifying the handling Editor, which is contrary to the journal policy on changes to authorship. Also, the co-authors were not able to provide a reasonable description of their contribution to the article.... 

    Nano-Fluid Natural Convection on a Constant Temperature Vertical Plate

    , M.Sc. Thesis Sharif University of Technology Iranmehr, Arash (Author) ; Nouri Boroujerdi, Ali (Supervisor)
    Abstract
    In the present study, Nano-fluid natural convection on a constant temperature vertical plate is numerically investigated, following the similarity analysis of transport equations. After changing the governing differential equations to the ordinary differential equations, they were numerically solved by the fourth order Runge-Kutta method.. The analysis shows that all three main profiles, velocity, temperature and concentration in their specific boundary layers, and the Prandtle number, depend on three important additional dimensionless parameters, namely a Brownian motion parameter, a thermophoresis parameter, and a buoyancy ratio parameter. Finally, it was found that the Nusselt number in... 

    Study on The Influence of Nanoparticles and Magnetic Field on The Liquid-Liquid Mass Transfer Coefficients

    , M.Sc. Thesis Sharif University of Technology Vahedi, Amid (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    Magnetite (Fe3O4) nanoparticles were synthesized and coated with Oleic Acid using the co-precipitation method. The particles were characterized using DLS, FT-IR, SEM, XRD, VSM and UV-Vis spectrophotometry analysis. The mean size of particles was 28.8 nm and the FT-IR analysis indicated that Oleic Acid was coated suitably on the nanoparticles. The vsm test indicated no hysteresis loop for the particles, defining the superparamagnetism of them. A nanofluid containing nanoparticles in 5wt% Acetic Acid in Toluene as the base fliud was prepared. The stability of this nanofluid was determined using UV-Vis spectrophotometry to be less more then 95% in the first two hours. This nanofluid is used as... 

    Simulation of the Effects of Nanofluids on the Thermal Performance of a Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Mirahmadi, Hamid Reza (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Co-Advisor)
    Abstract
    In terms of thermodynamics and heat transfer, heat pipes such as closed two-phase thermosyphon are of great importance in saving energy. In this study, a computational fluid dynamics model for simulation of a thermosyphon heat pipe with two-phase flow including phase change heat transfer was developed. The study has mainly focused on the effects of volume concentrations of Nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon. The analysis was performed to compare heat transfer performance between a solid copper tube and a thermosyphon heat pipe which contained deionized water and graphene oxide(GO)/water Nanofluid as its working fluids. Based on a... 

    Ion Transport Through Graphene Fibers

    , M.Sc. Thesis Sharif University of Technology Ghanbari, Hamid Reza (Author) ; Esfandiar, Ali (Supervisor)
    Abstract
    Nanostructured graphene based membranes demonstrated excellent capabilities in various applications in nanofiltration and energy conversion due to unique atomically smooth surfaces and adjustable pore size or interlayers spacing at Angstrom scales.In addition to graphitic surface and physical confinement on ions in Graphene-oxide (GO) laminates, surface charges on such 2D-slits provide an attractive aspects to have more channels walls interactions with ions. There are some reports on the osmotic power generation using physical confinements and electrostatic interactions between ions and GO membranes. However, the results indicated insufficient power densities (1 W=m2 ) can be achieved... 

    Experimental Investigation of Pulsating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Jamshidi, Hamed (Author) ; Shafiee, Mohammad Behshad (Supervisor)
    Abstract
    Pulsating heat pipes (PHP) are complex heat transfer devices which unlike conventional heat pipes do not contain any wick in their structure. The effective parameters consist of; working fluid, volumetric filling ratio, operational orientation and input heat power have been investigated here. The experimental set-up we have contemplated, fabricated and tested included five turns, made of copper tube coupled with two glass tube of internal diameter 1.8 mm. The height of evaporator, condenser and adiabatic section was 60, 60 and 150 mm, respectively. The evaporator was heated with electrical element connected to an AC variant power supply and the condenser was connected to a constant... 

    Determine the Thickness of Boundary Layer in Free Convection on the Vertical Plate With Uniform Heat Flux

    , M.Sc. Thesis Sharif University of Technology ainali, Omid (Author) ; Shafie, Behshad (Supervisor)
    Abstract
    Experiments were performed to explore the free convective hat transfer characteristics of water based nanofluids. Experiments of natural convection over a vertical flat plate with constant heat flux in water-based nanofluids with Ag and TiO2 nanoparticles were performed. Velocity boundary layer measured using PIV method. Also convective heat transfer coefficient obtained using three thermometers behind the wall. Various test cases with different heat fluxes on the wall are considered. Two volumetric concentrations of Ag nanofluid, 1% and 2%, and TiO2 nanofluid, 1% and 2%, were tested in the present study. It was shown that, with increasing nanofluid concentration, velocity boundary layer... 

    Study of the Effect of Presence of Nano- Particles on the Mass Transfer and Hydrodynamics of Drops

    , M.Sc. Thesis Sharif University of Technology Nozari, Ali (Author) ; Bastani, Daruoosh (Supervisor) ; Goodarznia, Iraj (Supervisor)
    Abstract
    Regarding to the effect of nanoparticles on mass transfer and hydrodynamics characteristics, limited number of studiesavailableinthe literature.In this work, mass transfer performanceand hydrodynamic characteristics nanofluidshavebeeninvestigated in the liquid−liquid extraction process. The chemical system of toluene-acetic acid-water was used, and two Extraction columnswith diameter of 10cm and height of 55cm and 6 cm were designed. The drops were organic nanofluids containing silica nano-particles and carbon nano-tubes.Synthesized silica nanoparticles by sol-gel methods, were modified with Triethoxyoctylsilane and Polydimethylsiloxane as well as Carbon nano-tubes were modified with dodecyl... 

    Modeling of Flow of Nano-filled Viscoelastic Fluids and its Application in Rheometry

    , M.Sc. Thesis Sharif University of Technology Kamyabi, Mohammad Mahdi (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    Despite of passing many years from invention of Computational Fluid Dynamics (CFD), simulation of the fluid-solid interfaces and free surfaces are still completely challenging and progressive problems. In addition knowing and understanding nanotechnology huge applications,modeling of nano-fluids have been became a priority for researchers. Adding importance of Non-Newtonian fluids (especially polymeric solutions) to this two subjects, triangle topics of this research becomes vivid. In this research tried to consider and examine behavior of Newtonian,Generalized-Newtonian, Viscoelastic and nano-filled viscoelastic fluids in one and two phase mediums. we followed mesh free methods which are... 

    Synthesis and Characterization of TiO2 Nanoparticles for Enhanced Oil Recovery Applications

    , Ph.D. Dissertation Sharif University of Technology Ehtesabi, Hamide (Author) ; Taghikhani, Vahid (Supervisor) ; Ahadian, Mohammad Mahdi (Supervisor) ; Vosoughi, Manouchehr (Co-Advisor)
    Abstract
    Enhanced oil recovery (EOR) techniques are gaining more attention worldwide as the proved oil is declining and the oil price is hiking. Although many giant oil reservoirs around the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR process.It has been shown that recently, nanoparticles are attractive agents to enhance the oil recovery at the laboratory scale.
    In this study TiO2 nanoparticles were used to improve... 

    Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe

    , Article Heat Transfer Engineering ; Vol. 35, issue. 1 , 2014 , pp. 25-33 ; ISSN: 01457632 Mohammadi, M ; Mohammadi, M ; Ghahremani, A. R ; Shafii, M. B ; Mohammadi, N ; Sharif University of Technology
    Abstract
    For the present article, a pulsating heat pipe (PHP) is fabricated and tested experimentally by bending a copper tube. The effects of working fluid, heat input, charging ratio, inclination angle, magnets location, and ferrofluid (magnetic nanofluid) volumetric concentration have been investigated on the thermal performance of this PHP. Experimental results show that using ferrofluid as a working fluid improves the thermal performance of the PHP significantly. Moreover, applying a magnetic field on a ferrofluidic PHP reduces its thermal resistance. By changing the inclination angle of the PHP from vertical mode to angles close to the horizontal mode, the present PHP has a constant and... 

    DSMC simulation of subsonic flow through nanochannels and micro/nano backward-facing steps

    , Article International Communications in Heat and Mass Transfer ; Volume 38, Issue 10 , 2011 , Pages 1443-1448 ; 07351933 (ISSN) Darbandi, M ; Roohi, E ; Sharif University of Technology
    2011
    Abstract
    In this study, we use direct simulation Monte Carlo method to simulate subsonic flow in nanochannels and micro/nanoscale backward-facing (BF) step considering a wide range of Knudsen number regimes. The nanochannel flow simulation indicates that the nanoscale flow through the nanochannel resembles unique features such as encountering negative pressure deviation behavior and observing flat velocity profiles at higher Knudsen number regimes. On the other hand, the micro/nano BF step flow simulations demonstrate that the length of separation region considerably decreases as the flow becomes more rarefied and approaches the transition regime. Meanwhile, the variations in the flow properties are... 

    Mixed-convection flow of Al2O3-H2O nanofluid in a channel partially filled with porous metal foam: Experimental and numerical study

    , Article Experimental Thermal and Fluid Science ; Vol. 53 , February , 2014 , pp. 49-56 ; ISSN: 08941777 Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    Mixed-convection flow of nanofluids inside a vertical rectangular channel partially filled with open-cell metal foam and subject to a constant wall-heat flux was investigated experimentally and numerically. Al2O3-water nanofluids with different concentrations were prepared and their stability was examined using UV-Vis spectroscopy. Dynamic light scattering method was used to determine particle size distribution of the nanofluid feedstock. The outlet temperature and pressure drop were measured for different nanofluid flow rates (i.e., Reynolds number values). In the numerical section, a two-dimensional volume-averaged form of the governing equations was used. The velocity and temperature... 

    Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 18, Issue 1 , 2014 , Pages 18-38 ; ISSN: 15567265 Mohammadi, M ; Taslimifar, M ; Haghayegh, S ; Hannani, S. K ; Shafii, M. B ; Saidi, M. H ; Afshin, H ; Sharif University of Technology
    Abstract
    The present research proposes an effective method to enhance the heat transport capability of conventional electronic coolers and improve their thermal management. Pulsating heat pipes (PHPs) are outstanding heat transfer devices in the field of electronic cooling. In the present study, two sets of open-loop pulsating heat pipes (OLPHPs) for two different magnetic nanofluids (with and without surfactant) were fabricated and their thermal performance was experimentally investigated. Effects of working fluid (water and two types of magnetic nanofluids), heating power, charging ratio, nanofluid concentration, inclination angle, application of a magnetic field, and magnet location are described.... 

    Thermal conductivity of mixed nanofluids under controlled pH conditions

    , Article International Journal of Thermal Sciences ; Volume 74 , 2013 , Pages 63-71 ; 12900729 (ISSN) Iranidokht, V ; Hamian, S ; Mohammadi, N ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Just a few investigations have been conducted to study the mixed nanofluids(MNs), which contain more than one type of nanoparticles, despite considerable advances in the field of nanofluids thermal conductivity. In present research, by combining different volume fractions of various nanoparticles, the variation of mixed nanofluids thermal conductivity was considered. The mentioned nanofluids have different fabrication cost. First, the effect of each specific nanoparticle presence in the base fluid on the thermal conductivity of nanofluid was surveyed both experimentally and theoretically. Then, the thermal conductivities of two MNs, one consisted of a metallic nanoparticle (high thermal...