Loading...
Search for: nanopores
0.007 seconds

    Effects of cone angle and length of nanopores on the resistive pulse quality

    , Article Physical Chemistry Chemical Physics ; Volume 22, Issue 43 , 2020 , Pages 25306-25314 Bakouei, M ; Abdorahimzadeh, S ; Taghipoor, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Resistive pulse sensing (RPS) has proved to be a viable method for the detection and characterization of micro and nano particles. Modern fabrication methods have introduced different nanopore geometries for resistive pulse sensors. In this paper, we have numerically studied the effects of membrane thickness and the pore's cone angle, as the main geometrical parameters, on the sensing performance of the nanopores used for nanoparticle detection in the resistive pulse sensing method. To compare the sensing performance, three resistive pulse quality parameters were investigated-sensitivity, pulse duration and pulse amplitude. The thorough investigation on the relations between the geometrical... 

    The effect of chemical functional groups and salt concentration on performance of single-layer graphene membrane in water desalination process: A molecular dynamics simulation study

    , Article Journal of Molecular Liquids ; Volume 301 , 2020 Chogani, A ; Moosavi, A ; Bagheri Sarvestani, A ; Shariat, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the mechanisms of passing water and salt ions through nanoporous single-layer graphene membrane are simulated using classical molecular dynamics. The effects of functional groups placed in nanopores and feed water's salt concentration on water desalination are investigated. In order to understand the role of functional groups in desalination process, Methyl, Ethyl and a combination of Fluorine and Hydrogen molecules are distributed around the nanopores. In all cases, different number of functional molecules is employed in order to find an optimum distribution of the groups at hand. The results show that an appropriate distribution of Alkyl groups can properly stop the salt... 

    Molecular simulation of protein dynamics in nanopores. I. Stability and folding

    , Article Journal of Chemical Physics ; Volume 128, Issue 11 , 2008 ; 00219606 (ISSN) Javidpour, L ; Rahimi Tabar, M. R ; Sahimi, M ; Sharif University of Technology
    2008
    Abstract
    Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of α -de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature Tf and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with Tf decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's... 

    All-Carbon negative differential resistance nanodevice using a single flake of nanoporous graphene

    , Article ACS Applied Electronic Materials ; Volume 3, Issue 8 , 2021 , Pages 3418-3427 ; 26376113 (ISSN) Rahighi, R ; Akhavan, O ; Shayesteh Zeraati, A ; Sattari Esfahlan, S. M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A temperature-induced degenerate p-type graphene nanopore/reduced graphene oxide (GNP/rGO) heterojunction-based nanodevice was prepared and studied for the first time, showing a robust negative differential resistance (NDR) feature. In this regard, cellulose-based perforated graphene foams (PGFs), containing numerous nanopores (with an average size of ∼2 nm surrounded by nearly six-layer rGO walls) were synthesized using bagasse as a green starting material. The PGFs with an essential p-type semiconducting property showed a band gap energy of ∼1.8 eV. The observed two-terminal NDR peak could present stable and reversible features at high temperatures of 586-592 K. It was demonstrated that... 

    Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores

    , Article Physics of Fluids ; Volume 34, Issue 8 , 2022 ; 10706631 (ISSN) Sadeghi, M ; Saidi, M. H ; Kröger, M ; Tagliazucchi, M ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    The electrokinetic energy conversion, electroviscous effect, and induced internal and external magnetic fields in a smart polyelectrolyte grafted "soft"nanopore with pH responsiveness are studied here using an efficient molecular theory approach. The analysis is based on writing the total free energy of the system, including the conformational entropy of the flexible, self-avoiding polymer chains and the translational entropy of the mobile species, the electrostatic interactions, and the free energy due to chemical equilibrium reactions. Then, the free energy is minimized, while satisfying the necessary constraints to find the equilibrium state of the system. The predictions of the model are... 

    Water desalination by charged multilayer graphene membrane: A molecular dynamics simulation

    , Article Journal of Molecular Liquids ; Volume 355 , 2022 ; 01677322 (ISSN) Mortazavi, V ; Moosavi, A ; Nouri Borujerdi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Graphene, due to its unique excellent properties, is proposed as a developing method with high efficiency compared to classical water desalination methods. In this regard, charging the membrane is considered a promising and effective approach to enhance the performance of the graphene membrane. In this research, by using molecular dynamics simulations, the water desalination by charged multilayer graphene is evaluated and the influence of electric charge amount and geometric parameters, including the pore diameter and the interlayer distance, are investigated. According to the results, the multilayer nanoporous graphene with 16.35 Å pore diameter, in which the electric charge is distributed... 

    First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases

    , Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) Abdolvahab, R. H ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on... 

    Synthesis of nanostructured and nanoporous TiO2-AgO mixed oxide derived from a particulate sol-gel route: Physical and sensing characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 8 , August , 2011 , Pages 2481-2492 ; 10735623 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO... 

    Direct conversion of inorganic complexes to platinum/thin oxide nanoparticles decorated on MOF-derived chromium oxide/nanoporous carbon composite as an efficient electrocatalyst for ethanol oxidation reaction

    , Article Journal of Colloid and Interface Science ; Volume 555 , 2019 , Pages 655-666 ; 00219797 (ISSN) Kamyar, N ; Rezaee, S ; Shahrokhian, S ; Amini, M. M ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this work, we present the design and fabrication of a novel nanocomposite based on noble metal and metal oxide nanoparticles dispersed on highly porous carbon obtained via the pyrolysis of an inorganic complex and metal-organic frameworks. This nanocomposite is prepared by a two-step procedure: first, the composite support of nanoporous carbon (NPC) is obtained by the direct carbonization of the Cr-benzene dicarboxylic ligand (BDC) MOF in an Argon atmosphere at 500 °C (Cr2O3-NPC). A mixture containing Cr2O3-NPC and [PtCl(SnCl3)(SMe2)2] is then prepared, and underflow of Argon is heated to 380 °C. Finally, Pt-SnO2 nanoparticles are loaded on the Cr2O3-NPC support, and the obtained... 

    Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework

    , Article Materials Science and Engineering C ; Volume 104 , 2019 ; 09284931 (ISSN) Hatamie, S ; Ahadian, M. M ; Soufi Zomorod, M ; Torabi, S ; Babaie, A ; Hosseinzadeh, S ; Soleimani, M ; Hatami, N ; Wei, Z. H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Metal-organic framework (MOF) based graphene oxide (GO) recently merits of attention because of the relative correspondence of GO with metal ions and organic binding linkers. Furthermore, introducing the GO to the Co-MOF to make a new nanoporous hybrid have are improved the selectivity and stability of the Co-MOF. Here the graphene oxide/cobalt metal organic framework (GO/Co-MOF) was synthesized by a solvothermal process using cobalt salt and terephthalic acid and used for biocidal activity, against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy were confirmed... 

    Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation

    , Article Journal of Colloid and Interface Science ; Volume 626 , 2022 , Pages 1070-1084 ; 00219797 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure–composition–property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles... 

    Polysaccharide-Based Nanocomposites as Green Sorbents in Microextraction Methodologies

    , Ph.D. Dissertation Sharif University of Technology Golzari Aqda, Tahereh (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    This thesis is focused on the preparation and use of polysaccharides as extractive phases in various extraction methods, such as the micro solid phase extraction (µ-SPE), needle trap microextraction (NTME) and thin film microextraction (TFME).In the first research, feasibility of the online µ-SPE method using cellulose acetate (CA) fibers was investigated. For this purpose, CA fibers were prepared by electrospinning technique and then placed into µ-SPE cartridge. With this method, it was possible to simultaneously extract the drug compounds in the urine and plasma samples. The enrichment factor and limits of detection (LODs) were obtained in the range of 194-210 and 1.0-2.4 μg L-1,... 

    Fabrication of nanoporous nickel oxide by de-zincification of Zn-Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors

    , Article Electrochimica Acta ; Volume 100 , 2013 , Pages 133-139 ; 00134686 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    NiO-ZnO/TiO2NTs electrodes were synthesized by the electrodeposition of Zn-Ni onto TiO2 nanotubes, dealloying in a concentrated alkaline solution and finally calcination of the resulting Zn(OH)2-Ni(OH)2/TiO2NTs at 300 C. Morphology of the electrodeposited nanostructures was studied using scanning electron microscopy (SEM) while their electrochemical characterizations were carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge procedures. The SEM analysis revealed the nanoporous/cracked structures of the NiO-ZnO/TiO2NTs obtained at the electroplating time of 20 min. The EIS studies showed that nanoporous/cracked structures of... 

    Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 4 , October , 2012 , Pages 629-636 ; 17351472 (ISSN) Sepehrian, H ; Samadfam, M ; Asadi, Z ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the sorption of uranium onto nanoporous silica adsorbent in the presence of nitrate, sulfate, chloride, fluoride and phosphate was studied. The effect of contact time between the nanoporous sorbent and aqueous solution, pH and initial concentration of uranium was also investigated. Uranium sorption onto nanoporous silica adsorbent is a very fast process as sorption rate increases with pH increment. Optimum pH for uranium sorption was 4-8. Experimental sorption isotherm is successfully described by Langmuir and Freundlich models. The results obtained by batch experiments showed that the presence of high concentration of nitrate, sulfate, chloride and phosphate anions alone had... 

    UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 102, Issue 3 , March , 2011 , Pages 232-240 ; 10111344 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Ghavami, S ; Soleyman, R ; Jafarpour, F ; Sharif University of Technology
    2011
    Abstract
    A highly swelling nanoporous hydrogel (NPH) was synthesized via UV-irradiation graft copolymerization of acrylic acid (AA) onto salep backbone and its application as a carrier matrix for colonic delivery of tetracycline hydrochloride (TH) was investigated. Optimized synthesis of the hydrogel was performed by the classic method. The swelling behavior of optimum hydrogel was measured in different media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis (TGA/DTG/DTA). The study of the surface morphology of hydrogels using SEM showed a nanoporous (average pore size: about 350 nm) structure for the sample obtained under... 

    Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping?

    , Article Materials Letters ; Volume 64, Issue 20 , 2010 , Pages 2215-2218 ; 0167577X (ISSN) Bayati, M.R ; Moshfegh, A. Z ; Golestani Fard, F ; Sharif University of Technology
    2010
    Abstract
    S-doped TiO2 layers were grown on titanium substrates by MAO process. SEM results revealed a porous morphology with a pore size of 40-100 nm. Our XRD analysis showed that the anatase relative content reached its maximum value at the voltage of 500 V. The existence of sulfur in the states of S 4+ and S6+ which substituted Ti4+ in the titania crystalline lattice was confirmed by XPS results; meanwhile, no S 2- was detected. That is, a cationic doping was observed. EDS results showed that sulfur concentration in the layers increased with the voltage. The band gap energy was also calculated as 2.29 eV employing a UV-Vis spectrophotometer  

    Vanadium–Schiff base complex-functionalized SBA-15 as a heterogeneous catalyst: synthesis, characterization and application in pharmaceutical sulfoxidation of sulfids

    , Article Research on Chemical Intermediates ; Volume 42, Issue 12 , 2016 , Pages 8201-8215 ; 09226168 (ISSN) Taghizadeh, M. J ; Karimi, H ; Sadeghi Abandansari, H ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    VO2(picolinichydrazone) complex as a catalyst was stabilized on a SBA-15 mesoporous silica as a catalytic support by using (3-chloropropyl)triethoxysilane as a connector. SBA-15 is nanoporous and has a high ratio of surface area to volume. The immobilization of a metal–Schiff base complex to the surface area of SBA-15 can improve its catalytic effects by increasing the catalytic surface area. Unlike homogeneous catalysts, heterogeneous catalysts can be recovered and reused several times without any significant loss of catalytic activity. A vanadium–Schiff base complex-functionalized SBA-15 was synthesized by covalency connected by a pre-synthesised VO2(picolinichydrazone) complex to... 

    Effect of nitrogen doping on glass transition and electrical conductivity of [EMIM][PF6] ionic liquid encapsulated in a zigzag carbon nanotube

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 29 , 2017 , Pages 15493-15508 ; 19327447 (ISSN) Taherkhani, F ; Minofar, B ; Sharif University of Technology
    Abstract
    Molecular level understanding of the properties of ionic liquids inside nanopores is needed in order to use ionic liquids for many applications such as electrolytes for energy storage in electric double-layer capacitors and dye-sensitized solar cells for conversion of solar energy. In this study, classical molecular dynamics (MD) simulations have been performed to investigate the radial distribution, glass transition, ionic transfer number, and electrical conductivity of the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate [EMIM][PF6] ionic liquid encapsulated in carbon nanotube (CNT). The effect of nitrogen as a doping element in CNT on these properties of [EMIM][PF6] was also... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; 2018 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Molecular simulation of protein dynamics in nanopores. II. Diffusion

    , Article Journal of Chemical Physics ; Volume 130, Issue 8 , 2009 ; 00219606 (ISSN) Javidpour, L ; Tabar, M.R.R ; Sahimi, M ; Sharif University of Technology
    2009
    Abstract
    A novel combination of discontinuous molecular dynamics and the Langevin equation, together with an intermediate-resolution model of proteins, is used to carry out long (several microsecond) simulations in order to study transport of proteins in nanopores. We simulated single-domain proteins with the α-helical native structure. Both attractive and repulsive interaction potentials between the proteins and the pores' walls are considered. The diffusivity D of the proteins is computed not only under the bulk conditions but also as a function of their "length" (the number of the amino-acid groups), temperature T, pore size, and interaction potentials with the walls. Compared with the...