Loading...
Search for: nanosheet
0.006 seconds
Total 141 records

    Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors

    , Article Journal of Electroanalytical Chemistry ; Volume 810 , 2018 , Pages 78-85 ; 15726657 (ISSN) Rahimi, S ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The design of 3-dimensional (3-D) nanostructured materials on the novel current collectors has recently considered as a promising strategy for developing high-performance supercapacitors. Herein, in the first step, a novel 3-D nickel nanocone arrays (NCAs) are synthesized on the surface of nickel plate (NP) by a one-step electrodeposition method without using any template (NCAs-NP). Then, a simple and efficient method is developed for fabricating ternary metal sulfides electrodes based on the electrodeposition of nickel cobalt iron sulfide (Ni-Co-Fe-S) ultrathin nanosheets on the surface of NCAs-NP. Taking advantages of the unique flower like structure of Ni-Co-Fe-S ultrathin nanosheets and... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 134 , 2019 , Pages 679-687 ; 02632241 (ISSN) Hatamie, A ; Jalilian, P ; Rezvani, E ; Kakavand, A ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, graphitic carbon nitride (g-C3N4) has attracted great interest for photo(electro)chemical applications such as sensing, solar energy exploitation, photocatalysis, and hydrogen generation. This paper presents the potential application and benefits of g-C3N4 nanolayers as a green and highly efficient electrode modifier for the detection of trace lead ions in drinking water and urban dust samples. Carbon nitride nanosheets with a thickness of ∼6 A° and lateral of 100–150 nm were prepared through high-temperature polymerization of melamine followed by sonication-assisted liquid exfoliation. A glassy carbon electrode (GCE) was modified by a thin layer of g-C3N4 through drop casting and... 

    Hybrid energy storage device from binder-free zinc-cobalt sulfide decorated biomass-derived carbon microspheres and pyrolyzed polyaniline nanotube-iron oxide

    , Article Energy Storage Materials ; Volume 25 , March , 2020 , Pages 621-635 Hekmat, F ; Hosseini, H ; Shahrokhian, S ; Unalan, H. E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    High-performance supercapacitors that merit superior power and energy densities, as well as long-term cycle durability are always of great significance as a building block of energy storage devices. Herein, an innovative strategy is developed to design hierarchical and unique porous structures of ternary metal sulfide nano-flake decorated porous hydrothermal carbon microspheres. Hierarchical microspheres of ternary zinc-cobalt sulfide nanosheet (NS) decorated biomass derived hydrothermal carbon spheres (HTCSs) are directly employed as the positive supercapacitor electrodes. In addition, composites of pyrolyzed polyaniline nanotubes (PPNTs) and iron oxide, receiving advantages from highly... 

    Graphitic carbon nitride nanosheet/metal-organic framework heterostructure: Synthesis and pollutant degradation using visible light

    , Article Materials Chemistry and Physics ; Volume 269 , 2021 ; 02540584 (ISSN) Kamandi, R ; Mahmoodi, N. M ; Kazemeini, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The construction of binary and ternary heterojunctions has gathered attention in water remediation applications. Herein, g-C3N4, MIL-101(Fe), and MIL-101(Fe)/g-C3N4 binary composite were synthesized by in-situ growth of MIL-101(Fe) crystals along with the nanosheets of g-C3N4. The materials have been characterized by XRD, FTIR, SEM, EDS, DRS, PL, and BET/BJH. The highest degradation efficiency achieved using MIL-101(Fe)/g-C3N4 nanocomposite was 99.3% while the pristine g-C3N4 degraded only 40% of the pollutants by photocatalyst dosage = 0.005 g, pH = 4.8, and irradiation time = 90 min condition. This enhanced photocatalytic performance might be attributed to improved optical properties and... 

    The impacts of utilizing nano-encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19481-19499 ; 0363907X (ISSN) Mohammadi, O ; Shafii, M. B ; Rezaee Shirin Abadi, A ; Heydarian, R ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Heat pipes are useful devices in heat transfer and particularly, in cooling systems. Given the high demand for cooling systems in various applications, an improvement in the performance of heat pipes has gained much attraction in recent years. In this study, the effects of utilizing working fluids with different thermal properties on the performance of pulsating heat pipes (PHP) are experimentally studied. Hence, nano-encapsulated phase change material (NPCM), reduced graphene oxide nanosheets, and their mixture, as a novel hybrid nanofluid, are prepared and dispersed in water as a working fluid. NPCM at 3 concentrations of 5, 10, and 20 g/L, as well as nanosheets at three concentrations of... 

    New insight into the filtration control of drilling fluids using a graphene-based nanocomposite under static and dynamic conditions

    , Article ACS Sustainable Chemistry and Engineering ; Volume 9, Issue 38 , 2021 , Pages 12844-12857 ; 21680485 (ISSN) Movahedi, H ; Jamshidi, S ; Hajipour, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    During oil and gas well drilling, the filtration control of bentonite water-based drilling fluids (BT-WBDFs), as an environmentally friendly fluid, is crucial to avoid formation damage and swelling shale problems. One of the most critical problems is undesirable changes in the rheology and filtration properties of the BT-WBDFs because of salt contamination. Herein, the potential of using both graphene oxide (GO) nanosheets and a graphene oxide-polyacrylamide (GO-PAM) nanocomposite is evaluated for controlling the filtration properties, especially in a salty medium. First, GO nanosheets were functionalized, and then the GO-PAM nanocomposite was synthesized using the solution polymerization... 

    Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal

    , Article Ceramics International ; Volume 47, Issue 18 , 2021 , Pages 26185-26196 ; 02728842 (ISSN) Naseri, A ; Samadi, M ; Pourjavadi, A ; Ramakrishna, S ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Semiconductor-based photocatalysis is an efficient approach for degradation of organic pollutants. In this context, ZnO/g-C3N4 composite nanofibers containing carbonaceous species with different concentrations of g-C3N4 nanosheets (x = 0.25, 0.5, 1, 2, 10 wt%) noted as ZnO/carbon/(x wt%) g-C3N4 are prepared by electrospinning technique. For preparation of the composite nanofibers, bulk g-C3N4 is exfoliated to nanosheets, and then it is mixed with polyvinyl alcohol and appropriate zinc acetate content followed by electrospinning process. Thermal annealing of the as spun zinc acetate/poly(vinyl alcohol)/g-C3N4 nanosheets sample under N2 atmosphere leads to the formation of carbonaceous species... 

    Nonenzymatic sweat-based glucose sensing by flower-like au nanostructures/graphene oxide

    , Article ACS Applied Nano Materials ; Volume 5, Issue 9 , 2022 , Pages 13361-13372 ; 25740970 (ISSN) Asen, P ; Esfandiar, A ; Kazemi, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The development of a nonenzymatic glucose sensor working in real human body conditions through a noninvasive sampling approach has attracted considerable attention. Hence, this work focuses on the development of a new nonenzymatic glucose sensor based on flower-like Au nanostructures (F-AuNTs) and graphene oxide (GO) as a supporting matrix. The F-AuNTs-GO hybrid was synthesized by simple drop casting of the GO suspension onto the graphite sheet (GS) followed by electrodeposition of F-AuNTs on GO nanosheets at 3 V in a two-electrode system. The electrocatalytic activity of the F-AuNTs-GO/GS sensor toward glucose electrooxidation was initially evaluated in a 0.1 M buffer phosphate solution (pH... 

    Coupling NiCoS and CoFeS frame/cagelike hybrid as an efficient electrocatalyst for oxygen evolution reaction

    , Article ACS Applied Energy Materials ; Volume 5, Issue 4 , 2022 , Pages 5199-5211 ; 25740962 (ISSN) Hafezi Kahnamouei, M ; Shahrokhian, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Engineering earth-rich, high-efficiency, and nonprecious electrocatalysts is an essential demand for water electrolysis to obtain clean and sustainable fuels. In this research, novel hybrid electrocatalysts based on coupling a hierarchical porous NiCo-mixed metal sulfide with a nanosheet structure (denoted as NiCoS) and a novel three-dimensional (3D) mesoporous open-cage/framelike structure of CoFeS are designed for oxygen evolution reaction (OER). In this regard, the single-step synthesis of a cobalt iron Prussian blue analog (CoFe PBA) frame/cagelike structure was performed without any etching step. Following a comparative study, CoFe PBA precursors were converted and doped with S, Se, and... 

    A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots

    , Article Progress in Materials Science ; Volume 124 , 2022 ; 00796425 (ISSN) Angizi, S ; Alem, S. A. A ; Hasanzadeh Azar, M ; Shayeganfar, F ; Manning, M. I ; Hatamie, A ; Pakdel, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Moving from two-dimensional hexagonal boron nitride (2D h-BN) flatlands towards their quantum sized zero-dimensional (0D) islands, as the newest member of the h-BN family, has recently opened up novel research areas due to the emergence of unique optical and physicochemical properties, excellent thermal and chemical stability, and desirable biocompatibility. This review elaborates on the fundamental properties of 2D and 0D h-BN nanomaterials and covers the latest progress in the fabrication and applications of BN nanosheets (BNNSs) and quantum dots (BNQDs). Initially, the transformation of properties in h-BN nanomaterials is discussed when moving from the 2D realm towards the 0D quantum... 

    A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation

    , Article Chemosphere ; Volume 297 , 2022 ; 00456535 (ISSN) Ajalli, N ; Alizadeh, M ; Hasanzadeh, A ; Khataee, A ; Azamat, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The potential of carbon-based nanosheet membranes with functionalized pores is great as water treatment membranes. Using the molecular dynamic simulation technique, the dimethyl sulfoxide (DMSO) separation from the water/DMSO binary solution is investigated, and the functionalized graphene nanosheets are used as a membrane. This membrane was functionalized by –F (fluorine) and –H (hydrogen) functional groups. For the separation of DMSO, external hydrostatic pressures up to 100 MPa were applied to the considered systems. The separation mechanism was based on molecular size. Multiple analyses were done to study the capability of considered membranes for the separation of DMSO molecules from... 

    Experimental Investigation Into the Performance of Pulsating Heat Pipe Using Nano-Encapsulated Phase Change Material Along with Rgo Nanosheets

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Omid (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Rezaee Shirin-Abadi, Abbas (Co-Supervisor)
    Abstract
    Heat pipes are useful devices in heat transfer, renewable energies and cooling systems in particular. According to various application of this systems in different industries, performance improvement of this devices has gained much importance. Working fluid is one of the effective factors on pulsating heat pipes. Since heat transfer in PHPs is natural convection and two-phase, specific heat and thermal conductivity of working fluid have an important role in the performance of pulsating heat pipes. In the present study, the effect of using nano-encapsulated PCM along with reduced graphene oxid (RGO) dispersed in water and their mixture as working fluid has on the performance of PHPs has been... 

    Synthesis of Hybrid Graphene Nanostructures and Their Application in Design and Fabrication of Electrochemical Sensors for Pharmaceutical and Biological Applications

    , Ph.D. Dissertation Sharif University of Technology Asadian, Elham (Author) ; Shahrokhian, Saeed (Supervisor) ; Iraji Zad, Azam (Supervisor) ; Mohajerzadeh, Shamsoddin ($item.subfieldsMap.e)
    Abstract
    Recent years have witnessed an increasing interest in graphene and graphene-based materials due to their extraordinary electrical properties, large specific surface area, fascinating mechanical properties, good chemical stability and remarkable electrochemical activity. The combination of these properties make graphene an attractive candidate for a wide range of applications including energy conversion and storage devices (batteries and supercapacitors), electronic devices (transistors and memory devices) and solar cells. On the other hand, graphene has a potential application in constructing different kind of sensors such as biosensors and electrochemical sensors due to its planar... 

    Synthesis of Silica Nanosheets Using Droplet-based Microfluidics

    , M.Sc. Thesis Sharif University of Technology Tamtaji, Mohsen (Author) ; Mohammadi, Aliasghar (Supervisor)
    Abstract
    The main purpose of this project is synthesis of the silica nano-sheets by means of microfluidic techniques. Continuous process, precise control of reaction condition, and higher production rate can be considered as main pros of silica nano-sheets synthesized by microfluidic platforms. General method can be explain as follow: first two oleic and aqueous phase are injected to the microfluidic system, then oleic phase breaks down in aqueous phase drop-wisely and by performing sol-gel reaction on the oil-water interface a silica crust is made on oil droplets. Eventually, oil droplets are left the system and broken down and silica nano-sheets are made. FESEM and microscopic images of... 

    Synthesize and Characterization of 2D WS2 Nano-layers for Next Generation Optoelectronic Devices

    , M.Sc. Thesis Sharif University of Technology Rahmani Taji Boyuk, Mohammad Reza (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Transition Metal Dichalcogenids (TMD) are types of 2D materials that exibit wide range of electronic, optical, mechanical, chemical, and thermal properties. These materials with MX2 general formula, have atract attentions with respect to their unusual properties because of their very limited dimensions. Their tunable properties and materials availibility make them attractive for wide range of applications. In recent years, chemical vapor deposition (CVD) methods are promising in preparing high quality TMD with scalable size, controllable thickness, and very excellent electronic properties. Also, chalenges are remaining in synthesis and transfering of TMD are difficulty for most of... 

    Synthesis, Characterization and Photoelectrochemical Application of two Dimensional MoS2 and WS2 Nanosheets

    , Ph.D. Dissertation Sharif University of Technology Zirak, Mohammad (Author) ; Zaker Moshfegh, AliReza (Supervisor) ; Moradlou, Omran (Co-Advisor)
    Abstract
    In this research, Synthesis, characterization and photoelectrochemical application of two dimensional MoS2 and WS2 nanosheets have been carefully investigated. And finally, based on theoritical and experimental analysis results, the mechanisms of the observed photoelectrochemical (PEC) activities were suggested.The ab initio density functional calculations about Mo1-xWxS2 monolayer deposited over a TiO2 (110) substrate revealed a shift in band position of the Mo1-xWxS2 in favor of photoelectrochemical water splitting. Moreover, increase of W concentration in Mo1-xWxS2 could improve the charge separation and increase the effective mass ratio leading to an extension of the electron–hole... 

    Synthesis and Study of Photocatalytic Properties of g-C3N4/TiO2 Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Abtahi, Mohammad (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    In this research, synthesis and characterization of photocatalytic properties of g-C3N4 / TiO2 nanocomposite was carried out. The target of research was to increase the photocatalytic properties of g-C3N4. So at first, g-C3N4 was synthesized from melamine precursor via thermal pyrolysis. Then, TiO2 nanoparticles were synthesized via sol – gel method. g-C3N4 / TiO2 nanocomposite with heterojunction structure was synthesized in one step by thermal pyrolysis of certain amounts of melamine precursor and TiO2 nanoparticles mixture in 550 ℃. Characterization of synthesized samples was carried out by XRD, FT-IR, UV-Vis, PL, BET, DLS and FE-SEM tests. Characterization results showed that g-C3N4,... 

    Microstructure/Properties Relationship in Lead Free Solder Joint Reinforced with Graphene Nanosheets

    , M.Sc. Thesis Sharif University of Technology Azghandirad, Sajjad (Author) ; Kokabi, Amir Hossein (Supervisor) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental reasons, a significant challenge was created in the design and development of tin-based lead-free solders with physical and mechanical properties close to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic composition and related compounds have been proposed as alloys to replace Sn-Pb solders. As a lead-free solder alloy, low melting point (≈217℃), high reliability of joints, and compatibility with various fluxes are among the properties of this category of alloys. In order to improve the mechanical properties of the joint... 

    Synthesis and Evaluation of Molybdenum Disulfide for Combined Photothermal-chemo Therapy

    , Ph.D. Dissertation Sharif University of Technology Salimi, Marzieh (Author) ; Vosoughi, Manouchehr (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor) ; Delavari, Hamid (Co-Supervisor)
    Abstract
    New methods of cancer treatment are always the attention of researchers all over the world, among which the photothermal treatment method is of particular importance. In addition to being easy, this treatment method has the least invasiveness. Studies have shown that combining this method with other methods such as chemotherapy not only can be very effective in destroying tumor tissue, but can significantly reduce the side effects of chemotherapy drugs.In order to apply the photothermal treatment method, an effective photothermal agent is needed. Molybdenum disulfide nanosheets have performed successfully in this field, which have been of great interest, due to their high efficiency in...