Loading...
Search for: nitrates
0.006 seconds

    Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 49-54 ; 10221360 (ISSN) Sarvi, I ; Pourjavadi, A ; Noei Aghaei, M. A ; Sharif University of Technology
    2008
    Abstract
    Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using eerie ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA  

    Recovery of uranium from carbonaceous radioactive waste of the UF6 production line in a uranium conversion plant: Laboratory and pilot plant studies

    , Article Hydrometallurgy ; Volume 205 , 2021 ; 0304386X (ISSN) Sadeghi, M. H ; Outokesh, M ; Sharifi, M ; Habibi Zare, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous radioactive waste is produced by adsorption of effluent gases of UF6 production line, on a bed of charcoal. Current research was aimed at developing a process for recovery of uranium from this waste in a laboratory and at pilot scale. As a first step, leaching of uranium from carbonaceous radioactive waste was undertaken by successive steps using Al(NO3)3 and nitric acid, the former used to eliminate corrosivity of the F− ions. The stoichiometry of reaction between F− and Al3+ ions form complexes ranging from AlF2+, AlF2+ to AlF3 depending upon their molar ratio. The results showed that the increase of NO3−/U ratio increased the uranium leaching efficiency. Presence of some... 

    Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    , Article Journal of Contaminant Hydrology ; Volume 210 , 2018 , Pages 50-64 ; 01697722 (ISSN) Hosseini, S. M ; Tosco, T ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and... 

    The Effect of Sulphate Concentration on Nitrogen Removal in MLE Bioreactor

    , M.Sc. Thesis Sharif University of Technology Ebrahimiazar, Maryam (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Discharging wastewater effluents to water bodies has many detrimental impacts on water quality. Thus, to prevent issues such as eutrophication and oxygen depletion, nitrogen removal is often required in wastewater treatment plants. Biological nitrification and denitrification, in comparison to physical and chemical methods, is more cost-effective and environmentally friendly, and this makes it one of the most commonly used approaches for nitrogen removal. In this work, nitrification and denitrification process and the effect of sulphate on this process is studied in a moving bed biofilm reactor (MBBR). The method used is modified LUDZACK-ETTINGER (MLE) which has an initial denitrification... 

    Performance Evaluation of Nitrate Removal from Drinking Water Using Microbial Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Irani, Vahid (Author) ; Gobal, Freydoon (Supervisor) ; Sajadi, Ali Albar (Supervisor)
    Abstract
    Nitrate can be used as an oxidant in a cathode chamber of microbial fuel cell. Nitrate is known to be a pollutant of water particularly underground water and is considered a carcinogen of water. Nitrate was used in the cathode chamber of a microbial fuel cell as an oxidant that lead to simultaneous generation of electricity, removal of organic matter in anode, and removal of nitrate in the cathode. Using nitrate generated a voltage of 151 mV with an external resistance of 1000Ω. The maximum power density achieved was 1.375 mW/m2 with an external resistance of 800Ω. Seven days after the cell became operational and without the presence of a catalyst, the amount of COD had decreased by 25... 

    Synthesis and Characterization of Praseodymium Nickelate for Low Temperature Solid Oxide Fuel Cell Cathode

    , M.Sc. Thesis Sharif University of Technology Naeini, Mina (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Solid oxide fuel cells as high temperature electrochemical devices draw much attention in the last decades due to their fuel flexibility, high efficiency and low pollution. However, lowering operating temperature from about 850°C to around 650°C without significant overpotential loss, in order to lower costs and increase cells life time has remained a challenge. Recently, a new family of mixed ionic and electronic conducting ceramics (MIECs) which are formulated Ln2NiO4+δ (Ln= La,Nd,Pr) and crystallized in Ruddlesden–Popper structure, have been regarded as appropriate cathode materials for the low or intermediate temperature solid oxide fuel cells (IT-SOFC). Amongst these compounds,... 

    Development and biomedical application of nanocomposites: In situ fabrication of ZnO-PbO nanocomposite through microwave method

    , Article Materials Technology ; Vol. 29, issue. 4 , July , 2014 , p. 227-231 Rajabi, A ; Aieneravaie, M ; Dorosti, V ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    A novel nanocomposite of ZnO-PbO with flower-like nanostructure was fabricated from zinc acetate and lead nitrate as principle raw materials via an in situ process. The novelty of this study consists in the use of a common approach for fabricating of ZnO and PbO nanoparticles simultaneously. From these experiments the conclusion might be drawn that Zn(NH4) 2 4+ ions and Pb(OH)2 act as precursors for the nucleation and growth of ZnO and PbO respectively under microwave irradiation. The precursors formation were carried at two stages: reaction between zinc ions and lead nitrate with ammonium ion and hydroxide sodium respectively. The average crystalline size of Zno and PbO has been analysed by... 

    Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers

    , Article Applied Surface Science ; Volume 258, Issue 7 , 2012 , Pages 2373-2377 ; 01694332 (ISSN) Omrani, A. A ; Taghavinia, N ; Sharif University of Technology
    2012
    Abstract
    A simple method has been demonstrated to grow silver nanoparticles on the surface of cellulose fibers. The preparation is based on photo-activation of surface by ultraviolet (UV) photons, followed by chemical reduction of silver nitrate. It is found that the concentration of silver nitrate in the solution is not a determining factor, while UV intensity affects the rate of initial growth and determines the final concentration of the loaded silver. We explain the phenomena based on a model including the number of reducing sites on the surface of cellulose fibers activated by UV photons, and a release mechanism that causes a slow rate of dissolution of silver back into the solution  

    Optimizing OLR and HRT in a UASB reactor for pretreating high- Strength municipal wastewater

    , Article Chemical Engineering Transactions ; Volume 24 , 2011 , Pages 1285-1290 ; 19749791 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    Abstract
    This study was carried out for examination of a lab-scale UASB reactor for optimization of organic loading rate and hydraulic retention time. The total volume of the reactor was 5 1 with an effective height of 160 cm and diameter of 5 cm. This reactor was used to treat fortified municipal wastewater at volumetric organic loadings of 3.6, 7.2, 10.8, and 14.4 kg m3 d 1 at temperature 30°C. The result of present work indicated an optimum range for organic loading (7.2 to 10.8 kg m-3 d-1) with COD removal efficiency of about 85%. Moreover, optimum HRT for influent COD concentration of 1200mg/l is shown to be only 4 hours. Furthermore nitrate removal efficiency was about 80% at optimized organic... 

    Spatially distributed influence of agro-environmental factors governing nitrate fate and transport in an irrigated stream-aquifer system

    , Article Hydrology and Earth System Sciences ; Volume 19, Issue 12 , 2015 , Pages 4859-4876 ; 10275606 (ISSN) Bailey, R. T ; Ahmadi, M ; Gates, T. K ; Arabi, M ; Sharif University of Technology
    Copernicus GmbH  2015
    Abstract
    Elevated levels of nitrate (NO3) in groundwater systems pose a serious risk to human populations and natural ecosystems. As part of an effort to remediate NO3 contamination in irrigated stream-aquifer systems, this study elucidates agricultural and environmental parameters and processes that govern NO3 fate and transport at the regional (500 km2), local (50 km2), and field scales (<1 km2). Specifically, the revised Morris sensitivity analysis method was applied to a finite-difference nitrogen cycling and reactive transport model of a regional-scale study site in the lower Arkansas River valley in southeastern Colorado. The method was used to rank the influence of anthropogenic activities and... 

    Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma

    , Article Cellulose ; Volume 17, Issue 3 , 2010 , Pages 627-634 ; 09690239 (ISSN) Shahidi, S ; Rashidi, A ; Ghoranneviss, M ; Anvari, A ; Rahimi, M. K ; Bameni Moghaddam, M ; Wiener, J ; Sharif University of Technology
    2010
    Abstract
    In this work, the silver particle absorption and antibacterial activity of cotton fabric when modified by low temperature plasma were investigated. The modification consisted of plasma pre-functionalization followed by one-step wet treatment with silver nitrate solution. Oxygen and nitrogen were used as the working gases in the system, and the results were compared. The results showed that nitrogen plasma-treated samples can absorb more silver particles than oxygen-treated samples, and thus the antibacterial activity of the samples in this case, which was analyzed by the counting bacteria test, was increased considerably  

    Synthesis of highly dispersed nanosized NiO/MgO-Al2O3 catalyst for the production of synthetic natural gas with enhanced activity and resistance to coke formation

    , Article Industrial and Engineering Chemistry Research ; Volume 57, Issue 38 , 2018 , Pages 12700-12714 ; 08885885 (ISSN) Ebadi, A ; Tourani, S ; Khorasheh, F ; Sharif University of Technology
    Abstract
    Nickel nanoparticles supported on MgO-Al2O3 and Al2O3 were synthesized by an impregnation method using dinitrobisethylenediamine nickel and nickel nitrate hexahydrate as precursors and were used as catalysts for CO methanation. Different MgO contents (1.5-11.25 wt %) were employed for the preparation of supports, and NiO loadings were in the range of 10-40 wt %. The optimum catalyst prepared from proper amounts of MgO (∼2 wt %) and NiO loading (20 wt %) with [Ni(en)2(H2O)2](NO3)2 as precursor and a mesoporous support with a wide range of mesopores resulted in highly dispersed nickel nanoparticles that exhibited moderate metal-support interactions, lower acidic surface sites, and enhanced... 

    Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery

    , Article Journal of Polymer Research ; Volume 16, Issue 6 , 2009 , Pages 655-665 ; 10229760 (ISSN) Pourjavadi, A ; Farhadpour, B ; Seidi, F ; Sharif University of Technology
    2009
    Abstract
    In this investigation a new type of superabsorbent hydrogel based on agar was prepared, and the effect of the feed ratio of some components (acrylic acid, MBA, APS and agar) on the swelling capacity of the hydrogel was systematically studied. Maximum water absorbency of the optimized final product was found to be 1,100∈g/g in distilled water. The structure of the hydrogel was characterized by FT-IR method and morphology of the samples was examined by scanning electron microscopy (SEM). Swelling properties of optimized hydrogel sample in different swelling mediums were investigated. The optimum hydrogel were also loaded with potassium nitrate and its potential for controlled release of... 

    Heterogeneous water oxidation by bidentate schiff base manganese complexes in the presence of cerium(IV) ammonium nitrate

    , Article Transition Metal Chemistry ; Volume 34, Issue 4 , 2009 , Pages 367-372 ; 03404285 (ISSN) Najafpour, M. M ; Boghaei, D. M ; Sharif University of Technology
    2009
    Abstract
    Oxygen evolution was observed upon mixing solid manganese(III) bidentate Schiff base complexes with aqueous solutions of cerium(IV) ammonium nitrate. However, oxygen evolution was not observed upon mixing solutions of the complexes (in acetonitrile) with Ce(IV). Electron-withdrawing substituents on the Schiff base ligands (NO2, Br) enhanced the reactivity of the manganese complexes toward oxygen evolution. Oxygen evolution was also affected by R groups on the ligands, in the order Me > Et Bz. © 2009 Springer Science+Business Media B.V  

    Mechanically stable superhydrophobic nanostructured aluminum mesh with reduced water surface friction

    , Article Nanotechnology ; Volume 32, Issue 19 , 2021 ; 09574484 (ISSN) Taghvaei, E ; Afzali, N ; Taghvaei, N ; Moosavi, A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Superhydrophobic surfaces demonstrate significant characteristics which make them suitable for a wide variety of applications. In this study, we propose a facile, one-step, and cost-effective anodizing scheme using aluminum nitrate/stearic acid mixture solution to create a superhydrophobic surface on an aluminum mesh. The surface outperforms the surface anodized by the widely used oxalic acid solution in terms of superhydrophobicity and water-surface friction behavior. The proposed surface reduced the friction by 11% on average respective to the surface prepared by oxalic acid. The durability of the introduced superhydrophobic surface has also been investigated. The proposed surface retained... 

    Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01

    , Article World Journal of Microbiology and Biotechnology ; Volume 29, Issue 6 , June , 2013 , Pages 1039-1047 ; 09593993 (ISSN) Partovi, M ; Lotfabad, T. B ; Roostaazad, R ; Bahmaei, M ; Tayyebi, S ; Sharif University of Technology
    2013
    Abstract
    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals.... 

    Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs)

    , Article Key Engineering Materials, 6 November 2011 through 9 November 2011 ; Volume 493-494 , November , 2012 , Pages 902-908 ; 10139826 (ISSN) ; 9783037852552 (ISBN) Fayyazbakhsh, F ; Solati Hashjin, M ; Shokrgozar, M. A ; Bonakdar, S ; Ganji, Y ; Mirjordavi, N ; Ghavimi, S. A ; Khashayar, P ; Sharif University of Technology
    2012
    Abstract
    Bone Tissue Engineering (BTE) composed of three main parts: scaffold, cells and signaling factors. Several materials and composites are suggested as a scaffold for BTE. Biocompatibility is one of the most important property of a BTE scaffold. In this work synthesis of a novel nanocomposite including layered double hydroxides (LDH) and gelatin is carried out and its biological properties were studied. The co-precipitation (pH=11) method was used to prepare the LDH powder, using calcium nitrate, Magesium nitrate and aluminum nitrate salts as starting materials. The resulted precipitates were dried. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron... 

    Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation

    , Article Applied Thermal Engineering ; Volume 161 , 2019 ; 13594311 (ISSN) Jafari Mosleh, H ; Ahmadi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One of the efficient solar energy harvesting technics is the parabolic trough concentrated solar power plant. However, if the concentrated solar power plant were not equipped with a storage system, the power plant capacity factor would be deficient. Latent thermal energy storage system using phase change material (PCM) is a high energy density storage system to provide durable energy with a constant temperature. In this study, first, a dynamic analysis is performed implementing TRNSYS software on the parabolic trough concentrated solar power plant located in Shiraz, Iran. Consequently, this system is assisted by the latent thermal energy storage system to improve its performance and capacity... 

    Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers

    , Article Science of the Total Environment ; Volume 705 , 2020 Esmaeilirad, S ; Lai, A ; Abbaszade, G ; Schnelle Kreis, J ; Zimmermann, R ; Uzu, G ; Daellenbach, K ; Canonaco, F ; Hassankhany, H ; Arhami, M ; Baltensperger, U ; Prévôt, A. S. H ; Schauer, J. J ; Jaffrezo, J. L ; Hosseini, V ; El Haddad, I ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    With over 8 million inhabitants and 4 million motor vehicles on the streets, Tehran is one of the most crowded and polluted cities in the Middle East. Frequent exceedances of national daily PM2.5 limit have been reported in this city during the last decade, yet, the chemical composition and sources of fine particles are poorly determined. In the present study, 24-hour PM2.5 samples were collected at two urban sites during two separate campaigns, a one-year period from 2014 to 2015 and another three-month period at the beginning of 2017. Concentrations of organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals and specific organic molecular markers were measured by chemical... 

    Cobalt supported on CNTs-covered γ- and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis

    , Article Journal of Natural Gas Chemistry ; Volume 21, Issue 6 , 2012 , Pages 713-721 ; 10039953 (ISSN) Hemmati, M. R ; Kazemeini, M ; Khorasheh, F ; Zarkesh, J ; Rashidi, A ; Sharif University of Technology
    2012
    Abstract
    Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications. In this investigation regular γ- and nano-structured (N-S) alumina as well as CNTs-covered regular γ- and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru. The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS. γ-Al2O3 was prepared by...