Loading...
Search for: non-destructive
0.007 seconds
Total 38 records

    Estimation of water coverage ratio in low temperature PEM-fuel cell using deep neural network

    , Article IEEE Sensors Journal ; Volume 20, Issue 18 , May , 2020 , Pages 10679-10686 Mehnatkesh, H ; Alasty, A ; Boroushaki, M ; Khodsiani, M. H ; Hasheminasab, M. R ; Kermani, M. J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Proton exchange membrane fuel cell (PEMFC) is a rich source of renewable energy. A non-destructive prediction method is needed to determine the content of water in the PEMFC. In the gas channel of a transparent PEMFC, water is detected with image processing. This method has a high computational cost and is sensitive to the initial position of the camera and ambient lighting. In this paper, the deep neural network (DNN) has been trained to learn the transparent PEMFC's labeled images as a way to determine the content of water, limit human interference and employed in a real-time process. This DNN model is a virtual sensor for measuring the water coverage ratio. To produce the label of images,... 

    Electromagnetic attenuation factor based nde approach for depth detection of hidden defects using HTS rf-SQUID

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 360-363 ; 9781728115085 (ISBN) Rostami, B ; Shanehsazzadeh, F ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    We present a new approach for non-destructive evaluation (NDE) in homogeneous and isotropic metallic objects which contain defects at unknown depths based on single scan and multi frequency excitation. As known, there is an optimum frequency for each depth of defect. Finding the depth of an unknown defect requires us to find the optimal frequency. In conventional single frequency methods, the optimal frequency is obtained by applying a wide range of frequencies to the system separately and comparing the corresponding results in a time-consuming process. Conventional multi frequency inspections were introduced to obtain more information about test specimens. There are two ways to apply... 

    Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete

    , Article Construction and Building Materials ; Volume 260 , 2020 Heidarnezhad, F ; Jafari, K ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study investigates the mechanical properties of lightweight polymer concrete (LWPC) containing four different polymer ratios (10%, 12%, 14%, and 16%) tested at three different temperatures (−15 °C, +5 °C, and +25 °C) using destructive and non-destructive tests. In addition, a series of expressions are suggested to predict the splitting-tensile, flexural and impact strength of LWPC based on the main parameters and compressive strength. The analysis of variance (ANOVA) method was also used to determine relative contributions of the experimental parameters. The results of the destructive tests show that increasing the polymer ratio caused an increase in the compressive, splitting-tensile,... 

    Damage detection of L-shaped beam structure with a crack by electromechanical impedance response: analytical approach and experimental validation

    , Article Journal of Nondestructive Evaluation ; Volume 39, Issue 2 , 2020 Hamzeloo, S. R ; Barzegar, M ; Mohsenzadeh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Damage detection and structural health monitoring using the electromechanical impedance method has been accepted as an effective technique between various approaches of nondestructive evaluation. Many efforts have been made on experimental methods for obtaining the impedance of structures. However, expensive experimental methods encourage researchers to develop theoretical models. In this paper, a new theoretical model is developed for damage detection of L-shaped beams, which are basic components in frame structures, with an embedded piezoelectric wafer active sensor. For this purpose, a chirp signal of voltage is used to activate a piezoelectric patch for inducing local strains that lead... 

    Corrosion detection in pipes by piezoelectric sensors using Artificial Neural Network

    , Article Advanced Materials Research, 4 November 2011 through 6 November 2011 ; Volume 403-408 , November , 2012 , Pages 748-752 ; 10226680 (ISSN) ; 9783037853122 (ISBN) Rafezi, H ; Rahmani, B ; Sharif University of Technology
    2012
    Abstract
    Defect detection in pipes is an essential task specially for sensitive applications such as oil and gas industry where special cares are required. Corrosion is a common defect in pipes which has attracted attention of researchers. In present work a non-destructive methodology for pipe corrosion monitoring is introduced. Polymer of Vinylidene Fluoride (PVDF) Piezoelectric is used as the sensor to measure strain variations affected by internal corrosion. High sensitivity and low cost of piezoelectric materials made them a good candidate for precise industrial applications. Different corrosion conditions (i.e. corrosion location along pipe and corrosion depth) are modeled and sensors voltages... 

    Convolutional neural networks for estimating the ripening state of fuji apples using visible and near-infrared spectroscopy

    , Article Food and Bioprocess Technology ; Volume 15, Issue 10 , 2022 , Pages 2226-2236 ; 19355130 (ISSN) Benmouna, B ; García Mateos, G ; Sabzi, S ; Fernandez Beltran, R ; Parras-Burgos, D ; Molina Martínez, J. M ; Sharif University of Technology
    Springer  2022
    Abstract
    The quality of fresh apple fruits is a major concern for consumers and manufacturers. Classification of these fruits according to their ripening stage is one of the most decisive factors in determining their quality. In this regard, the aim of this work is to develop a new method for non-destructive classification of the ripening state of Fuji apples using hyperspectral information in the visible and near-infrared (Vis/NIR) regions. Spectra of 172 apple samples in the range from 450 to 1000 nm were studied, which were selected from four different ripening stages. A convolutional neural network (CNN) model was proposed to perform the classification of the samples. The proposed method was... 

    Comparison of various anodization and annealing conditions of titanium dioxide nanotubular film on MB degradation

    , Article EPJ Applied Physics ; Volume 47, Issue 1 , 2009 ; 12860042 (ISSN) Mohammadpour, R ; Iraji Zad, A ; Ahadian, M. M ; Taghavinia, N ; Dolati, A ; Sharif University of Technology
    2009
    Abstract
    In this study the influence of morphology of vertically oriented titanium oxide nanotube arrays (TNTAs) on their photocatalytic activities was investigated. To obtain nanotubes with different morphologies, they were prepared at different anodization voltages. The size of TNTAs were measured using SEM images and also determined based on a non-destructive optical method; We demonstrate how the tubular geometry of the TNTAs can be used to adjust the optical and also the wetting properties of them and how these properties affect the performance of the nanostructure in further applications as a photocatalyst. To investigate their potentials for environmental applications, the photocatalytic... 

    Assessment of plain and glass fiber-reinforced concrete under impact loading: a new approach via ultrasound evaluation

    , Article Journal of Nondestructive Evaluation ; Volume 38, Issue 4 , 2019 ; 01959298 (ISSN) Soleimanian, E ; Toufigh, V ; Sharif University of Technology
    Springer  2019
    Abstract
    Impact loading leads to micro-crack formation that can compromise the performance of the concrete. The purpose of this paper is to evaluate plain concrete and fiber-reinforced concrete specimens using ultrasound methods under impact loading. These specimens were prepared and subjected to impact loading. Ultrasound tests were performed at different stages of impact loading on each specimen. The loading continued until cracks on the surface of the specimens were observed. Investigations were performed for both plain concrete and fiber-reinforced concrete to establish a correlation between ultrasound response characteristics, and the damage caused by impact loading due to the energy of blows... 

    Approximating the distribution of flaws in magnetic materials using the generalized inverse

    , Article 2011 IEEE International Conference on Imaging Systems and Techniques, IST 2011 - Proceedings, 17 May 2011 through 18 May 2011, Batu Ferringhi ; May , 2011 , Pages 137-141 ; 9781612848969 (ISBN) Ravanbod, H ; Abdollahi Jahdi, S ; Norouzi, E ; Sharif University of Technology
    2011
    Abstract
    Non-destructive identification of voids in ferromagnetic materials is of great importance for industrial applications. Magnetic flux leakage technique is used here to examine the defected structure. To this end, an inverse problem should be solved in order to infer the location and depth of internal flaws from the measured leaked magnetic signals. Currently generalized inverse method and singular value decomposition are used for solving such inverse problem. Considering the cracks separation has significant effect on the absolute value of magnetic flux leakage signals, we study different distributions of cracks. In this paper, the magnetic dipole model is proposed to reconstruct the extent... 

    Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints

    , Article Journal of Manufacturing Processes ; Volume 52 , 2020 , Pages 26-34 Amiri, N ; Farrahi, G. H ; Kashyzadeh, K. R ; Chizari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Ultrasonic Testing (UT) is one of the well-known Non-Destructive Techniques (NDT) of spot-weld inspection in the advanced industries, especially in automotive industry. However, the relationship between the UT results and strength of the spot-welded joints subjected to various loading conditions is unknown. The main purpose of this research is to present an integrated search system as a new approach for assessment of tensile strength and fatigue behavior of the spot-welded joints. To this end, Resistance Spot Weld (RSW) specimens of three-sheets were made of different types of low carbon steel. Afterward, the ultrasonic tests were carried out and the pulse-echo data of each sample were... 

    A novel method for modeling the magnetizing yoke

    , Article Electromagnetics ; Volume 30, Issue 3 , 2010 , Pages 297-308 ; 02726343 (ISSN) Ravanbod, H ; Norouzi, E
    2010
    Abstract
    Magnetic flux leakage is the most widely used method for oil and gas pipeline non destructive testing. The saturation level of the sample under test has a significant effect on its efficiency; therefore, the magnetizing yoke requires an elaborate design. The finite element method is the conventional approach used for this purpose, but it is very time consuming. In this article, a neuro-fuzzy method is presented to model the behavior of the magnetizing yoke. Modeling a few different designs with the finite element method and using the results for training the neuro-fuzzy model eradicates the necessity of modeling a huge number of designs with the finite element method. The acquired... 

    An innovative inverse analysis based on the Bayesian inference for concrete material

    , Article Ultrasonics ; Volume 124 , 2022 ; 0041624X (ISSN) Nouri, A ; Toufigh, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Nondestructive tests and evaluations are robust techniques for inspecting different attributes of concrete configuration. However, most nondestructive techniques focused on an aspect of concrete configuration based on comparison to other samples. In this paper, an innovative inverse analysis technique was developed to inspect different attributes of concrete configuration simultaneously. The methodology was based on the scattering feature of the ultrasonic waves during propagation in heterogeneous media. The transition matrix method was employed to determine the scattered wavefield. This method considers the shape of objects, unlike most other numerical methods. Furthermore, a novel... 

    An efficient finite-element approach for the modeling of planar double-D excitation coils and flaws in SQUID NDE systems

    , Article IEEE Transactions on Applied Superconductivity ; Volume 20, Issue 2 , 2010 , Pages 76-81 ; 10518223 (ISSN) Sarreshtedari, F ; Pourhashemi, A ; Asad, N ; Schubert, J ; Banzet, M ; Fardmanesh, M ; Sharif University of Technology
    2010
    Abstract
    Incorporating an efficient approach for the finite-element simulation of eddy current superconductive quantum interface device (SQUID) nondestructive evaluation (NDE) systems, an appropriate finite-element method (FEM) has been presented for simulating and analyzing such systems. We have introduced a new model for the planar double-D coils, which are used as the excitation source in eddy current SQUID NDE systems, and also another model for the description of the flaw effect on the induced current. We have also examined our simulation results with their associated measurements. Our system is based on a high-TC YBCO gradiometer RF-SQUID sensor with a flux noise level below 100 μΦ0 √Hz at 100... 

    An appropriate procedure for detection of journal-bearing fault using power spectral density, K-nearest neighbor and support vector machine

    , Article International Journal on Smart Sensing and Intelligent Systems ; Volume 5, Issue 3 , 2012 , Pages 685-700 ; 11785608 (ISSN) Moosavian, A ; Ahmadi, H ; Tabatabaeefar, A ; Sakhaei, B ; Sharif University of Technology
    2012
    Abstract
    Journal-bearings play a significant role in industrial applications and the necessity of condition monitoring with nondestructive tests is increasing. This paper deals a proper fault detection technique based on power spectral density (PSD) of vibration signals in combination with K-Nearest Neighbor and Support Vector Machine (SVM). The frequency domain vibration signals of an internal combustion engine with three journal-bearing conditions were gained, corresponding to, (i) normal, (ii) corrosion and (iii) excessive wear. The features of the PSD values of vibration signals were extracted using statistical and vibration parameters. The extracted features were used as inputs to the KNN and... 

    Analytical model for the extraction of flaw-induced current interactions for SQUID NDE

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 4 , 2011 , Pages 3442-3446 ; 10518223 (ISSN) Sarreshtedari, F ; Hosseini, M ; Razmkhah, S ; Mehrany, K ; Kokabi, H ; Schubert, J ; Banzet, M ; Krause, H. J ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Incorporating an analytical approach to simulate the interaction of a series of long cracks and the induced current of a double-D excitation coil, we have developed a model-based method to do precise detection of the positions of the cracks in a metallic structure by using eddy-current superconducting quantum interference device (SQUID) nondestructive evaluation (NDE) measurements. Conventionally, the structure of the defects is found by iteratively solving a numerical forward problem, which is usually based on finite-element, boundary-element, or volume-integral method. This, however, incurs a heavy numerical burden, as every time the forward problem is to be solved, a rigorous numerical... 

    Advanced damage detection technique by integration of unsupervised clustering into acoustic emission

    , Article Engineering Fracture Mechanics ; 2018 ; 00137944 (ISSN) Behnia, A ; Chai, H. K ; GhasemiGol, M ; Sepehrinezhad, A ; Mousa, A. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The use of acoustic emission (AE) technique for damage diagnostic is typically challenging due to difficulties associated with discrimination of events that occur during different stages of damage that take place in a material or a structure. In this study, an unsupervised kernel fuzzy c-means pattern recognition analysis and the principal component method were utilized to categorize various damage stages in plain and steel fiber reinforced concrete specimens monitored by AE technique. Enhancement of the discrimination and characterization of damage mechanisms were achieved by processing time and frequency domain data. Both domains (time and frequency) were taken into account to propose new... 

    Advanced damage detection technique by integration of unsupervised clustering into acoustic emission

    , Article Engineering Fracture Mechanics ; Volume 210 , 2019 , Pages 212-227 ; 00137944 (ISSN) Behnia, A ; Chai, H. K ; GhasemiGol, M ; Sepehrinezhad, A ; Mousa, A. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The use of acoustic emission (AE) technique for damage diagnostic is typically challenging due to difficulties associated with discrimination of events that occur during different stages of damage that take place in a material or a structure. In this study, an unsupervised kernel fuzzy c-means pattern recognition analysis and the principal component method were utilized to categorize various damage stages in plain and steel fiber reinforced concrete specimens monitored by AE technique. Enhancement of the discrimination and characterization of damage mechanisms were achieved by processing time and frequency domain data. Both domains (time and frequency) were taken into account to propose new... 

    Acoustic simulation of ultrasonic testing and neural network used for diameter prediction of three-sheet spot welded joints

    , Article Journal of Manufacturing Processes ; Volume 64 , 2021 , Pages 1507-1516 ; 15266125 (ISSN) Ghafarallahi, E ; Farrahi, G. H ; Amiri, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ultrasonic Testing (UT) is one of the most common types of nondestructive methods that is being used in various industries, especially in the automotive industry. In this paper, qualitative and quantitative control of resistance spot welds on three-sheet joints was studied. Initially, mathematical model of ultrasonic waves was extracted for triple sheet joints. Then, acoustic simulation of ultrasonic testing on spot welds was performed using Finite Element Method (FEM). Afterwards, A Multilayer Perceptron (MLP) neural network was used to classify spot welds based on their diameter. There was a mean error of 20.9 % between peak amplitudes of numerical and theoretical models which the most...