Loading...
Search for: operating-condition
0.014 seconds
Total 195 records

    User assessment of traffic quality measures on freeway weaving segments

    , Article 6th International Conference on Traffic and Transportation Studies Congress 2008: Traffic and Transportation Studies Congress 2008, ICTTS 2008, Nanning, 5 August 2008 through 7 August 2008 ; Volume 322 , 2008 , Pages 827-836 ; 9780784409954 (ISBN) Dehghani Sanij, M. S ; Vaziri, M ; Sharif University of Technology
    ASCE - American Society of Civil Engineers  2008
    Abstract
    According to the Highway Capacity Manual, definitions of level of service for freeways are generally in terms of such service measures as freedom to maneuver, change in free flow speed, and drivers' physical and psychological comfort. These quality measures are inherently uncertain and are highly dependent on user perceptions. However, users' perception of traffic operational conditions has not been explicitly considered in defining LOS categories. This study attempt to evaluate freeways LOS and other quality measures describing LOS, based on user perception. Therefore, twenty 1-minute video clips of a weaving freeway segment were shown to users. For each video clip, users' perceptions of... 

    A series stacked IGBT switch to be used as a fault current limiter in HV high-power supplies

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 9, Issue 5 , 2021 , Pages 6300-6314 ; 21686777 (ISSN) Mohsenzade, S ; Zarghani, M ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The safe operating condition for the vacuum tubes is very important and critical since they are very expensive and delicate. Providing limited short circuit energy for the vacuum tube and fast transferring from the short circuit to the nominal operation state are absolutely necessary. Extant protection strategies threat the availability of the vacuum tubes. In addition, they cannot completely protect the tube due to the delay of the fault detection system. This article proposes a high voltage (HV) short circuit fault current limiter which can limit the short circuit energy of the system inherently. The proposed structure activates automatically when the current exceeds the predetermined... 

    Evaluation of the sparse reconstruction and the delay-and-sum damage imaging methods for structural health monitoring under different environmental and operational conditions

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 169 , 2021 ; 02632241 (ISSN) Nokhbatolfoghahai, A ; Navazi, H. M ; Groves, R. M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this paper, the performance of the sparse reconstruction (SR) and the delay-and-sun (DAS) methods for damage localization, were evaluated for various environmental and operational conditions, both numerically and experimentally. To assess these damage localization methods, a methodology based on the Taguchi method was used to make the experimental design, and a modified performance-index was defined to represent the quality of reconstructed images. Then, the robustness and the accuracy of each method, in a well-defined performance region relevant to in-service aerospace structures, were investigated using the Taguchi and analysis of variance methods. It was concluded that for the defined... 

    Applications of thermal energy storage in solar organic rankine cycles: A comprehensive review

    , Article Frontiers in Energy Research ; Volume 9 , 2021 ; 2296598X (ISSN) Salem, M ; Fahim Alavi, M ; Mahariq, I ; Accouche, O ; El Haj Assad, M ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    Organic Rankine Cycles (ORCs) are promising approaches for generating power from medium or low temperature heat sources. In this regard, ORCs can be used to indirectly produce power from solar energy. Due to intermittent nature of solar energy, storage unit should be coupled with solar ORCs to improve the output power and operating hours. In this article, studies on solar ORCs integrated with various types of storage units were reviewed; the main findings of such studies were extracted and provided. Based on the findings, several factors such as the temperature and pressure at the inlet of the turbine, as well as the operating condition affect the performance of solar ORCs with thermal... 

    Utilization of hydrogen in gas turbines: a comprehensive review

    , Article International Journal of Low-Carbon Technologies ; Volume 17 , 2022 , Pages 513-519 ; 17481317 (ISSN) Alhuyi Nazari, M ; Fahim Alavi, M ; Salem, M ; Assad, M. E. H ; Sharif University of Technology
    Oxford University Press  2022
    Abstract
    The concerns regarding the consumption of traditional fuels such as oil and coal have driven the proposals for several cleaner alternatives in recent years. Hydrogen energy is one of the most attractive alternatives for the currently used fossil fuels with several superiorities, such as zero-emission and high energy content. Hydrogen has numerous advantages compared to conventional fuels and, as such, has been employed in gas turbines (GTs) in recent years. The main benefit of using hydrogen in power generation with the GT is the considerably lower emission of greenhouse gases. The performance of the GTs using hydrogen as a fuel is influenced by several factors, including the performance of... 

    Symmetric and asymmetric performance investigation of a diverterless supersonic inlet

    , Article AIAA Journal ; Volume 60, Issue 5 , 2022 , Pages 2850-2859 ; 00011452 (ISSN) Askari, R ; Soltani, M. R ; Sharif University of Technology
    AIAA International  2022
    Abstract
    A series of wind-tunnel tests were conducted on a Y-shaped diverterless supersonic inlet (DSI) in order to investigate its performance at various operating conditions. The present DSI was designed for a freestream Mach number of M∞ 1.65. The experiments were performed at supercritical, critical, and subcritical operating conditions and at 0 deg angle of attack and angle of side slip. The results showed that the present DSI had an acceptable performance at its design condition. A symmetric supersonic flow pattern was observed at both supercritical and critical operating conditions. At low subcritical operating conditions, the supersonic flow pattern remained symmetric too. However, at high... 

    Optimum operating conditions for direct oxidation of h 2s in a fluidized bed reactor

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , 2011 , Pages 237-241 ; 2010376X (ISSN) Golestani, F ; Kazemeini, M ; Fattahi, M ; Amjadian, A ; Sharif University of Technology
    2011
    Abstract
    In this research a mathematical model for direct oxidization of hydrogen sulfide into elemental sulfur in a fluidized bed reactor with external circulation was developed. As the catalyst is deactivated in the fluidized bed, it might be placed in a reduction tank in order to remove sulfur through heating above its dew point. The reactor model demonstrated via MATLAB software. It was shown that variations of H 2S conversion as well as; products formed were reasonable in comparison with corresponding results of a fixed bed reactor. Through analyzing results of this model, it became possible to propose the main optimized operating conditions for the process considered. These conditions included;... 

    Effect of operation conditions on the catalytic performance of the Co/Mn/TiO2 catalyst for conversion of synthesis gas to light olefins

    , Article Scientia Iranica ; Volume 17, Issue 2 C , November , 2010 , Pages 168-176 ; 10263098 (ISSN) Shayegh, F ; Ghotbi, C ; Bozorgmehry Boozarjomehry, R ; Rashtchian, D ; Sharif University of Technology
    Abstract
    The effect of operation variables, such as the H2/CO molar feed ratio, gas hourly space velocity (GHSV), temperature, and pressure, on the catalytic performance of the Co/Mn/TiO2 catalyst prepared at the Research Institute of the Petroleum Industry (RIPI) was investigated, and optimum reactor conditions were obtained to produce the maximum amount of light olefins. The catalyst was prepared by co-precipitation of Co and Mn phases in the presence of commercial TiO2 with maximum selectivity for ethylene and propylene production. It was found that the [H2]/[CO]=2/1, space velocity (GHSV) of 1800 h-1, 280°C temperature and 4 bar pressure were optimum operating conditions for the modified catalyst... 

    Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 231, Issue 3 , 2017 , Pages 418-432 ; 09544070 (ISSN) Khazaee, M ; Banakar, A ; Ghobadian, B ; Agha Mirsalim, M ; Minaei, S ; Jafari, S. M ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    Abnormal operating conditions for the timing belt can lead to cracks, fatigue, sudden rupture and damage to engines. In this study, an intelligent system was developed to detect and classify high-load operating conditions and high-temperature operating conditions for timing belts. To achieve this, vibration signals in normal operating conditions, high-load operating conditions and high-temperature operating conditions were collected. Time-domain signals were transformed to the frequency domain and the time-frequency domain using the fast Fourier transform method and the wavelet transform method respectively. In the data-mining stage, 25 statistical features were extracted from different... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    Using sliding mode control to adjust drum level of a boiler unit with time varying parameters

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ; Vol. 5 , 2010 , pp. 29-33 ; ISBN: 9780791849194 Moradi, H ; Bakhtiari-Nejad, F ; Saffar-Avval, M ; Alasty, A ; Sharif University of Technology
    Abstract
    Stable control of water level of drum is of great importance for economic operation of power plant steam generator systems. In this paper, a linear model of the boiler unit with time varying parameters is used for simulation. Two transfer functions between drum water level (output variable) and feed-water and steam mass rates (input variables) are considered. Variation of model parameters may be arisen from disturbances affecting water level of drum, model uncertainties and parameter mismatch due to the variant operating conditions. To achieve a perfect tracking of the desired drum water level, two sliding mode controllers are designed separately. Results show that the designed controllers... 

    Investigation into the capability of a modern decline curve analysis for gas condensate reservoirs

    , Article Scientia Iranica ; Vol. 18, issue. 3 C , June , 2011 , p. 491-501 ; ISSN: 10263098 Sadeghi Boogar, A ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (Arps and Fetkovich) to modern (for the variation of operating conditions at the wellbore). The application of these techniques for analysis of the production data of a gas condensate reservoir may not yield reliable answers due to the fact that the flow of fluid in gas condensate reservoirs is not single-phase. This paper presents the treatment of a modern method of production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). For this purpose, a single-phase... 

    Analyses of mass and heat transport interactions in a direct methanol fuel cell

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , p. 11224-11240 ; ISSN: 03603199 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, non-isothermal model is presented to predict the electrochemical, mass transfer and heat transfer behaviors in a direct methanol fuel cell (DMFC). Governing equations including the momentum, continuity, heat transfer, proton and electron transport, species transport for water, methanol, and all the gas species (carbon dioxide, methanol vapor, water vapor, oxygen, and nitrogen) and the auxiliary equations are coupled to studying the various phenomena in DMFC. The modeling results agree well with the four different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine the effects of the cell... 

    Dme direct synthesis from syngas in a large-scale three-phase slurry bubble column reactor: transient modeling

    , Article Chemical Engineering Communications ; Vol. 201, issue. 5 , Nov , 2014 , pp. 612-634 ; ISSN: 00986445 Papari, S ; Kazemeini, M ; Fattahi, M ; Fatahi, M ; Sharif University of Technology
    Abstract
    In this research, a new transient mathematical model based upon tanks-in-series configuration was developed to simulate the direct synthesis of dimethyl ether (DME) from syngas in a commercial-scale slurry bubble column reactor. A comparison between the simulation results and experimental data showed that the applied model might acceptably describe the behavior of the slurry reactor. Furthermore, simulation results in the heterogeneous bubble flow regime indicated that the proposed model with 10 tanks-in-series provided the optimum condition. Utilizing this transient model and considering catalyst deactivation, the effect of operating conditions on DME productivity and CO conversion were... 

    Optimization of uhmwpe/graphene nanocomposite processing using ziegler-natta catalytic system viaresponse surface methodology

    , Article Polymer - Plastics Technology and Engineering ; Vol. 53, Issue. 9 , June , 2014 , pp. 969-974 ; ISSN: 03602559 Shafiee, M ; Ramazani, S. A. A ; Sharif University of Technology
    Abstract
    Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X1), monomer pressure (X2), and [Al]/[Ti] molar ratio (X3) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for... 

    A validated numerical-experimental design methodology for a movable supersonic ejector compressor for waste-heat recovery

    , Article Journal of Thermal Science and Engineering Applications ; Volume 6, Issue 2 , Oct , 2014 ; 19485085 (ISSN) Alimohammadi, S ; Persoons, T ; Murray, D. B ; Tehrani, M. S ; Farhanieh, B ; Koehler, J ; Sharif University of Technology
    Web Portal ASME (American Society of Mechanical Engineers)  2014
    Abstract
    The aim of this paper is to develop the technical knowledge, especially the optimum geometries, for the design and manufacturing of a supersonic gas-gas ejector for a wasteheat driven vehicle cooling system. Although several studies have been performed to investigate the effects of geometrical configurations of gas-gas ejectors, a progressive design methodology of an ejector compressor for application to a vehicle cooling system has not yet been described. First, an analytical model for calculation of the ejector optimum geometry for a wide range of operating conditions is developed, using R134a as the working fluid with a rated cooling capacity of 2.5 kW. The maximum values of entrainment... 

    Performance study of an inlet in supersonic flow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 227, Issue 1 , 2013 , Pages 159-174 ; 09544100 (ISSN) Soltani, M. R ; Farahani, M ; Sharif University of Technology
    2013
    Abstract
    The performance characteristics of an axisymmetric inlet at its design and off-design operational conditions are experimentally investigated. The model is tested for wide ranges of free stream Mach numbers, M∞ = 1.5-2.5, and mass flow rates. For each test, the pressure recovery, the mass flow passing through the inlet and the pressure distribution over the spike and the cowl are measured. In addition, the shock wave formed in front of the inlet is visualized. The characteristic curve of the inlet is then obtained for each free stream Mach number. As the Mach number is increased, the pressure recovery is reduced, but the maximum value of the mass flow rate grows up. Variations of the mass... 

    Thermoeconomic approach for optimal design of gas turbine heat recovery steam generator

    , Article Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013 ; July , 2013 Hanafizadeh, P ; Parhizgar, T ; Ghorbanian, K ; Sharif University of Technology
    China International Conference Center for Science and Technology  2013
    Abstract
    In the present study a comprehensive thermoeconomic modelling of a heat recovery steam generator (HRSG) for a typical 4MW class gas turbine is performed. Usually, the thermoeconomic analyses involve a thermodynamic model of the HRSG and an economic model dedicated to assess the cost. In this study, different configurations of single and dual pressure level HRSGs are optimized and afterward compared to find the economical design. For these configurations thermodynamic model calculates the performance and the energy balance of systems at the optimal operating conditions which are derived from optimization model, and economic model estimates total cost per unit of produced energy. Finally,... 

    Modelling of fischer-tropsch synthesis in a fluidized bed reactor

    , Article Advanced Materials Research ; Volume 586 , 2012 , Pages 274-281 ; 10226680 (ISSN) ; 9783037855232 (ISBN) Kazemeini, M ; Maleki, R ; Fattahi, M
    2012
    Abstract
    The FT reaction involves the conversion of syngas which is derived from natural gas or coal to different kinds of products according to the operating conditions and the type of the catalyst. In other words, it is a practical way to convert solid fuel (coal) and natural gas to various hydrocarbons (C1-C60) and oxygenates such as alkanes, alkenes etc. The main products of the reaction are naphtha and gasoline. This paper deals with developing a proper product distribution model for FT process using the appropriate kinetic model, optimizing the respective rate constants while applying them in product distribution equations. The results revealed only 8.09% deviations from the olefin experimental... 

    Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings

    , Article Journal of Fuel Cell Science and Technology ; Volume 9, Issue 5 , 2012 ; 1550624X (ISSN) Ashari, G. R ; Ehyaei, M. A ; Mozafari, A ; Atabi, F ; Hajidavalloo, E ; Shalbaf, S ; Sharif University of Technology
    ASME  2012
    Abstract
    In this paper, a Polymer Electrolyte Membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger, and water heater has been considered. A PEM fuel cell system is designed to meet the electrical, domestic hot water, heating, and cooling loads of a residential building located in Tehran. Operating conditions of the system with consideration of the electricity cost has been studied. The cost includes social cost of the environmental pollutants (e.g. CO 2, CO and NO). The results show that the maximum energy needs of the building can be met by 12 fuel cell stacks with nominal capacity of 8.5 kW. Annual average electricity cost of thissystem is equal to 0.39 US$/kWh and...