Loading...
Search for: parametric-study
0.015 seconds
Total 104 records

    Parametric study and design approach of off-center bracing systems

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 3 , 2017 ; 15417794 (ISSN) Sedaghati, P ; Lotfollahi, M ; Mofid, M ; Sharif University of Technology
    Abstract
    This paper presents an effective approach for the seismic design of off-center bracing systems (OBSs). The nonlinear behavior of an OBS can be specified by evaluation of two yielding stages representing tensile yielding of different bracings. This can be achieved when stiffness of the corner brace member is deliberately considered less enough to act as a fuse-like component. An accurate two-dimensional finite element modeling for the geometric and material nonlinearity of such systems considering buckling behavior of the brace members is developed. Through an extensive parametric study, the optimal ratios of the influential parameters of OBS are obtained, and their effects on the nonlinear... 

    Parametric study and computation of seismic performance factors of braced shear panels

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 460-474 ; 10263098 (ISSN) Hamed, A ; Mofid, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    By locating a steel shear panel on the intersection point of the X-braces, concentrically or eccentrically braced shear panel (CBFSP or EBFSP) is formed. In this paper, to perform parametric study, 1-story CBFSP and EBFSP models with span length greater or less than height are considered. Using linear static analyses, the effects of size and location of the shear panel on the lateral stiffness of the frame with respect to the moment resisting frame with the same member sections are investigated. Next, for 1- And 3-story models, maximum displacement, along with base shear, and the ratio between the dissipated energy and input energy are examined under 4 ground motion records. Behavior of the... 

    Parametric analyses on the initial stiffness of the SHS column base plate connections using FEM

    , Article Engineering Structures ; Volume 34 , 2012 , Pages 363-370 ; 01410296 (ISSN) Khodaie, S ; Mohamadi-shooreh, M. R ; Mofid, M ; Sharif University of Technology
    Abstract
    Bolted Column Base Plate (BCBP) connections are widely used to connect steel columns to the concrete foundations. This paper conducts a parametric study on the initial stiffness of bolted base plate with Square Hollow Section (SHS) column connection, through an extended 3-D Finite Element Modeling (FEM). Different features of the connection such as material behavior, geometric details, typical contact phenomena and large displacements are also considered in the modeling. A comparison between experimental test and FEM is carried out to illustrate the ability of the numerical method to simulate the connection behavior. An analytical explanation on the initial stiffness of the connection is... 

    Parametric analyses of multispan viscoelastic shear deformable beams under excitation of a moving mass

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 131, Issue 5 , 2009 , Pages 0510091-05100912 ; 10489002 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2009
    Abstract
    This paper presents a numerical parametric study on design parameters of multispan viscoelastic shear deformable beams subjected to a moving mass via generalized moving least squares method (GMLSM). For utilizing Lagrange's equations, the unknown parameters of the problem are stated in terms of GMLSM shape functions and the generalized Newmark-β scheme is applied for solving the discrete equations of motion in time domain. The effects of moving mass weight and velocity, material relaxation rate, slenderness, and span number of the beam on the design parameters and possibility of mass separation from the base beam are scrutinized in some detail. The results reveal that for low values of beam... 

    On the temperature and residual stress field during grinding

    , Article WCE 2010 - World Congress on Engineering 2010, 30 June 2010 through 2 July 2010 ; Volume 2 , 2010 , Pages 1196-1200 ; 9789881821072 (ISBN) H-Gangaraj, S. M ; Farrahi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    Abstract
    Grinding is widely used for manufacturing of components that require fine surface finish and good dimensional accuracy. In this study a thermo-mechanical finite element analysis is conducted to find out how grinding parameters can affect temperature and residual stress distribution in the workpiece. Results of parametric study presented in this work indicate, by carefully selecting the grinding parameters, minimum thermal and mechanical damage can be achieved. Higher workpiece velocities produce higher surface residual stress. By increasing depths of cut, depth of tensile residual stresses increases. Convection heat coefficient does not have any considerable effect on surface residual stress... 

    Numerical study of the effects of process parameters on tool life in a cold radial forging process

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , p. 339-346 Afrasiab, H ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    Radial forging is an open die forging process used for reducing the diameters of shafts, tubes, stepped shafts and axles, and for creating internal profiles in tubes. Due to very large forging loads, the tool should withstand high stress and wear. Therefore, the success of the forging process depends upon recognition of the die failure factors and optimization of the tool working conditions that enhance tool life. In this study, the effect of process parameters on tool life in the cold radial forging process is investigated using nonlinear three dimensional finite element modeling. Wear and mechanical fatigue are considered as the main modes of tool failure, and a parametric study on the... 

    Numerical study of stiff diaphragm walls used to improve the performance of rocking foundation systems

    , Article Journal of Earthquake Engineering ; Volume 25, Issue 13 , 2021 , Pages 2628-2650 ; 13632469 (ISSN) Sadjadi, M ; Fadaee, M ; Ghannad, M. A ; Jahankhah, H ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This research explores the effectiveness of the use of stiff diaphragm walls next to a rocking foundation through numerical simulation. This improvement technique is used as a means to increase in subsoil peripheral confinement and reduce rocking-induced settlement. The numerical model was verified by the centrifuge test of rocking shallow foundations on clay under cyclic loading. A parametric study was conducted to explore the effect of three stiff wall shapes on the performance of a rocking system. The general conclusion of the parametric investigation is that the use of stiff diaphragm walls reduced the sinking-dominated settlement response of the rocking system. © 2019 Taylor & Francis... 

    Numerical optimization and inverse study of a microfluidic device for blood plasma separation

    , Article European Journal of Mechanics, B/Fluids ; Volume 57 , 2016 , Pages 31-39 ; 09977546 (ISSN) Shamloo, A ; Vatankhah, P ; Bijarchi, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a passive microfluidic device for continuous real time blood plasma separation has been studied and optimized. A numerical model is used to solve both the fluid flow and the particles confined within it. Red blood cells are considered as particles with diameter of 7μm. A parametric study is performed in order to characterize the effect of different parameters on separation and purity efficiency. In this study, four different variables were introduced to design the microfluidic device for blood plasma separation including: the angle between the daughter channels and the main channel, the widths, the diffuse angle and the number of daughter channels. Results show that the... 

    Numerical investigation of the swirling air diffuser: Parametric study and optimization

    , Article Energy and Buildings ; Volume 43, Issue 6 , June , 2011 , Pages 1329-1333 ; 03787788 (ISSN) Sajadi, B ; Saidi, M. H ; Mohebbian, A ; Sharif University of Technology
    2011
    Abstract
    During the recent decade, high induction diffusers have become more appealing in applications which require relatively high ventilation airflow rates, such as clean rooms. In this research, the effect of geometric parameters on the performance of a specific type of swirling air diffuser is investigated numerically. The results show that although the diffuser slots geometry, namely their angle and aspect ratio, is impressive on the diffuser performance, it is not as important as the swirling blade angle and the performance is almost constant in a wide range of slots specifications. The results also demonstrate that the diffuser performance and the resultant indoor airflow distribution highly... 

    Numerical investigation of stability of deep excavations supported by soil-nailing method

    , Article Geomechanics and Geoengineering ; 2019 ; 17486025 (ISSN) Pak, A ; Maleki, J ; Aghakhani, N ; Yousefi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Deep excavation in urban areas can cause instability problems due to significant settlement at the ground surface and large movements at the excavation facing walls. One of the most popular methods used to stabilise these excavations is utilising soil-nailing method. This method has also been widely used to stabilise natural slopes and earth retaining structures. Because of the complexity involved in the mechanism of this stabilising system due to interacting effects of the soil, nails, grout and shotcrete, numerical modelling with high accuracy should be used to analyse the behaviour of the soil-nailed walls. Considering all aspects of soil-structure interaction in the present research, a... 

    Numerical investigation of stability of deep excavations supported by soil-nailing method

    , Article Geomechanics and Geoengineering ; 2019 ; 17486025 (ISSN) Pak, A ; Maleki, J ; Aghakhani, N ; Yousefi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Deep excavation in urban areas can cause instability problems due to significant settlement at the ground surface and large movements at the excavation facing walls. One of the most popular methods used to stabilise these excavations is utilising soil-nailing method. This method has also been widely used to stabilise natural slopes and earth retaining structures. Because of the complexity involved in the mechanism of this stabilising system due to interacting effects of the soil, nails, grout and shotcrete, numerical modelling with high accuracy should be used to analyse the behaviour of the soil-nailed walls. Considering all aspects of soil-structure interaction in the present research, a... 

    Numerical investigation of a portable incinerator: A parametric study

    , Article Processes ; Volume 8, Issue 8 , 2020 Pour, M. S ; Hakkaki Fard, A ; Firoozabadi, B ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The application of incinerators for the municipal solid waste (MSW) is growing due to the ability of such instruments to produce energy and, more specifically, reduce waste volume. In this paper, a numerical simulation of the combustion process with the help of the computational fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done to investigate the most critical parameters for a reliable design of a domestic portable incinerator, which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that, the waste height,... 

    Numerical investigation into the effects of geometrical and loading parameters on lateral spreading behavior of liquefied layer

    , Article Acta Geotechnica ; 2013 , Pages 1-13 ; 18611125 (ISSN) Pak, A ; Seyfi, S ; Ghassemi, A ; Sharif University of Technology
    2013
    Abstract
    Numerical simulation of liquefaction-induced lateral spreading in gently sloped sandy layers requires fully coupled dynamic hydro-mechanical analysis of saturated sandy soil subjected to seismic loading. In this study, a fully coupled finite element model utilizing a critical-state two-surface-plasticity constitutive model has been applied to numerically investigate the effects of surface/subsurface geometry on lateral spreading. Using a variable permeability function with respect to excess pore pressure ratio is another distinctive feature of the current study. The developed code has been verified against the results of the well-known VELACS project. Lateral spreading phenomenon has been... 

    Nonlinear vibration of a three-dimensional moving gantry crane subjected to a travelling trolley hoisting a swinging object

    , Article Transactions of the Canadian Society for Mechanical Engineering ; Volume 34, Issue 3-4 , 2010 , Pages 333-350 ; 03158977 (ISSN) Younesian, D ; Ghafoori, E ; Sadeghpour, M ; Sharif University of Technology
    2010
    Abstract
    Nonlinear vibration of a three-dimensional moving gantry crane carrying a trolley hoisting a swinging object is studied in this paper.A finite element method is used to solve nonlinear coupled governing equations of the structure. A combinational technique (Newmark-Runge-Kutta) is employed for direct integration procedure. To develop a comprehensive parametric study and sensitivity analysis of the coupled nonlinear system, sequence of numerical simulations are carried out. Parametric study is directed to find out how different parameters like speed and acceleration of the trolley and gantry crane as well as the mass of the moving trolley and swinging object may affect the linear and... 

    Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares

    , Article Structural Engineering and Mechanics ; Volume 36, Issue 2 , 2010 , Pages 225-241 ; 12254568 (ISSN) Mousavi, S. M ; Gandomi, A. H ; Alavi, A. H ; Vesalimahmood, M ; Sharif University of Technology
    2010
    Abstract
    In this study, a hybrid search algorithm combining genetic programming with orthogonal least squares (GP/OLS) is utilized to generate prediction models for compressive strength of high performance concrete (HPC) mixes. The GP/OLS models are developed based on a comprehensive database containing 1133 experimental test results obtained from previously published papers. A multiple least squares regression (LSR) analysis is performed to benchmark the GP/OLS models. A subsequent parametric study is carried out to verify the validity of the models. The results indicate that the proposed models are effectively capable of evaluating the compressive strength of HPC mixes. The derived formulas are... 

    Modeling and analytical solution of hybrid thermopiezoelectric micro actuator and performance study under changing of different parameters

    , Article Mechanics of Advanced Materials and Structures ; Volume 22, Issue 10 , Mar , 2015 , Pages 785-793 ; 15376494 (ISSN) Pourrostami, H ; Kargarnovin, M. H ; Zohoor, H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Micro actuators are an irreplaceable part of motion control in miniaturized systems and are intended to have a high range of deformation, high accuracy, large force, and quick response. In this article, an analytical model for a hybrid thermopiezoelectric micro actuator is developed in which a double lead-zirconnate-titanate piezoceramic (PZT) beam structure consisting of two arms with different lengths are used. Governing differential equation of motion and electrical field are derived and solved. Out of parametric studies it was observed that, under application of temperature and voltage gradients, the deflection of the actuator shows different trends depending on the geometry of the micro... 

    Mixed electroosmotically and pressure-driven flow with temperature- dependent properties

    , Article Journal of Thermophysics and Heat Transfer ; Volume 25, Issue 3 , Sep , 2011 , Pages 432-442 ; 08878722 (ISSN) Sadeghi, A ; Yavari, H ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2011
    Abstract
    The present work reports the outcome of a comprehensive parametric study on mixed electroosmotically and pressure-driven flow in slit microchannels with constant wall heat fluxes. Special attention is given to disclose the applicability ranges of usual assumptions in simplified analyses. The governing equations for fully developed conditions are first made dimensionless and then solved by means of an implicit finite difference method. The results reveal that the assumption of constant thermophysical properties does not leadto significant errors in practical applications. Although the Debye-Huckel linearization may successfully be used to evaluate velocity profiles up to the zeta potentials... 

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: operational parameters

    , Article Engineering with Computers ; 2022 ; 01770667 (ISSN) Omidi, J ; Mazaheri, K ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Plasma actuator is a flow control device which may be used to improve the performance of wind turbine blades at low airspeeds. One of the most robust numerical models to simulate the interaction of the plasma actuator with the fluid flow is the electrostatic model. This model is improved by the authors. Due to the high cost of performing experimental optimization, the optimization of plasma actuators may be investigated by this numerical model. To optimize the aerodynamic performance of a Delft University (DU) wind turbine airfoil in a full stall condition, we used the operational parameters (voltage, frequency and the waveform) applied to the plasma actuator as the main design variables. We... 

    Local and global buckling condition of all-steel buckling restrained braces

    , Article Steel and Composite Structures ; Volume 23, Issue 2 , 2017 , Pages 217-228 ; 12299367 (ISSN) Mirtaheri, S. M ; Nazeryan, M ; Bahrani, M. K ; Nooralizadeh, A ; Montazerian, L ; Naserifard, M ; Sharif University of Technology
    Techno Press  2017
    Abstract
    Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system.... 

    Large deformation finite element modeling of rubble mound breakwater built on soft seabed using coupled eulerian–lagrangian method

    , Article Indian Geotechnical Journal ; Volume 51, Issue 2 , 2021 , Pages 315-328 ; 09719555 (ISSN) Masoudi, S ; Shahir, H ; Pak, A ; Sharif University of Technology
    Springer  2021
    Abstract
    For the design of rubble mound breakwaters on soft soil, it is essential to predict the behavior of soft soil and large deformations phenomena occurring in the course of construction of the rubble mound breakwater. Large deformations in various problems can be well simulated using the coupled Eulerian–Lagrangian (CEL) method. In this study, the CEL method has been used to simulate the rubble mounds construction on soft soil and predict the resulting settlements. To validate the numerical model, the results of three experiments conducted in the physical modeling laboratory at Kharazmi University were used. Also, two case studies of real rubble mound breakwaters constructed on soft seabeds...