Loading...
Search for: photocurrents
0.007 seconds
Total 42 records

    Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers

    , Article Nano Letters ; Volume 10, Issue 5 , April , 2010 , Pages 1632-1638 ; 15306984 (ISSN) Ghadiri, E ; Taghavinia, N ; Zakeeruddin, S. M ; Grätzel, M ; Moser, J. E ; Sharif University of Technology
    2010
    Abstract
    Nanostructured TiO2 hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion... 

    The role of TiO2 addition in ZnO nanocrystalline thin films: Variation of photoelectrochemical responsivity

    , Article Electrochimica Acta ; Volume 56, Issue 18 , July , 2011 , Pages 6284-6292 ; 00134686 (ISSN) Naseri, N ; Yousefi, M ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    In this study, the effects of TiO2 addition on the physical and photoelectrochemical properties of ZnO thin films have been investigated. The (TiO2)x-(ZnO)1-x nanocomposite thin films were dip-coated on both glass and indium tin oxide (ITO)-coated conducting glass substrates with various values of x, specifically 0, 0.05, 0.1, 0.25 and 0.5. Optical properties of the samples were studied by UV-vis spectrophotometry in the range of 300-1100 nm. The optical spectra of the nanocomposite thin films showed high transparency in the visible region. The optical bandgap energy of the (TiO2)x-(ZnO)1-x films increased slightly with increasing values of x. The crystalline structure of the nanocomposite...