Loading...
Search for: physical-chemistry
0.008 seconds

    Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus

    , Article Chemistry and Physics of Lipids ; Volume 234 , 2021 ; 00093084 (ISSN) Akbarzadeh, I ; Keramati, M ; Azadi, A ; Afzali, E ; Shahbazi, R ; chiani, M ; Norouzian, D ; Bakhshandeh, H ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Niosomes, as a kind of drug delivery system, is widely used for the topical delivery of lipophilic drugs. Optimization of niosomes plays an essential role in enhancing their therapeutic efficiencies. This study aims to prepare an optimized niosomal formulation of simvastatin (nSIM), a lipophilic member of statins, through the experiment (Response Surface methodology). Optimized niosomes were characterized in size, polydispersity index (PDI), entrapment efficiency (EE), stability, releasing pattern, and antimicrobial activity. The different molar ratio of surfactant and cholesterol were applied to prepare various formulation of simvastatin loaded niosome. Mean particle size and size... 

    On the optimality of the genetic code, with the consideration of coevolution theory by comparison of prominent cost measure matrices

    , Article Journal of Theoretical Biology ; Volume 235, Issue 3 , 2005 , Pages 318-325 ; 00225193 (ISSN) Goodarzi, H ; Shateri Najafabadi, H ; Hassani, K ; Ahmadi Nejad, H ; Torabi, N ; Sharif University of Technology
    2005
    Abstract
    Statistical and biochemical studies have revealed non-random patterns in codon assignments. The canonical genetic code is known to be highly efficient in minimizing the effects of mistranslation errors and point mutations, since it is known that when an amino acid is converted to another due to error, the biochemical properties of the resulted amino acid are usually very similar to those of the original one. In this study, using altered forms of the fitness functions used in the prior studies, we have optimized the parameters involved in the calculation of the error minimizing property of the genetic code so that the genetic code outscores the random codes as much as possible. This work also... 

    Novel one-pot synthesis of functionalized quinolines from isocyanides, aniline, and acetylene dicarboxylate via cu-catalyzed intramolecular C─H activation reactions

    , Article Journal of Heterocyclic Chemistry ; Volume 56, Issue 4 , 2019 , Pages 1254-1259 ; 0022152X (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    HeteroCorporation  2019
    Abstract
    The one-pot synthesis of a novel class of substituted quinoline derivatives with good yields is achieved via the Cu-catalyzed intramolecular C─H activation reaction between isocyanides, aniline, and acetylene dicarboxylate in MeCN at room temperature. The existence of one-pot conditions, availability of a starting material-catalyst, the absence of column chromatography, and a high yield of products are among the advantages of this method. The structures are confirmed spectroscopically (1H NMR and 13C NMR, IR, and EI-MS) and through elemental analyses  

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    New proline, alanine, serine repeat sequence for pharmacokinetic enhancement of anti-vegf single-domain antibody

    , Article Journal of Pharmacology and Experimental Therapeutics ; Volume 375, Issue 1 , July , 2020 , Pages 69-75 Khodabakhsh, F ; Salimian, M ; Mehdizadeh, A ; Khosravy, M. S ; Vafabakhsh, A ; Karami, E ; Cohan, R. A ; Sharif University of Technology
    American Society for Pharmacology and Experimental Therapy  2020
    Abstract
    Therapeutic fragmented antibodies show a poor pharmacokinetic profile that leads to frequent high-dose administration. In the current study, for the first time, a novel proline, alanine, serine (PAS) repeat sequence called PAS#208 was designed to extend the plasma half-life of a nanosized anti-vascular endothelial growth factor-A single-domain antibody. Polyacrylamide gel electrophoresis, circular dichroism, dynamic light scattering, and electrophoretic light scattering were used to assess the physicochemical properties of the newly designed PAS sequence. The effect of PAS#208 on the biologic activity of a single-domain antibody was studied using an in vitro proliferation assay. The... 

    Nanomedicine applications in orthopedic medicine: State of the art

    , Article International Journal of Nanomedicine ; Volume 10 , 2015 , Pages 6039-6054 ; 11769114 (ISSN) Mazaheri, M ; Eslahi, N ; Ordikhani, F ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Dove Medical Press Ltd  2015
    Abstract
    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions... 

    Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review

    , Article Journal of Environmental Management ; Volume 313 , 2022 ; 03014797 (ISSN) Tavakoli, A ; Rahimi, K ; Saghandali, F ; Scott, J ; Lovell, E ; Sharif University of Technology
    Academic Press  2022
    Abstract
    In recent years, the importance of capturing CO2 has increased due to the necessity of minimizing climate change and the detrimental effects of CO2 emissions from industrial processes. CO2 absorption, as one of the most mature carbon capture technologies, has been improved by introducing nanosized particles into liquid absorbents. Nanofluids have been the subject of interest in many studies recently due to their tremendous impact on absorption. This review comprehensively examines the CO2 absorption behavior for nanofluids through the investigation of different absorption systems. Potential mechanisms for improving the absorption/regeneration performance of nanoabsorbents as well as the... 

    Molecular simulation of protein dynamics in nanopores. I. Stability and folding

    , Article Journal of Chemical Physics ; Volume 128, Issue 11 , 2008 ; 00219606 (ISSN) Javidpour, L ; Rahimi Tabar, M. R ; Sahimi, M ; Sharif University of Technology
    2008
    Abstract
    Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of α -de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature Tf and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with Tf decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's... 

    Microfluidic systems for stem cell-based neural tissue engineering

    , Article Lab on a Chip - Miniaturisation for Chemistry and Biology ; Volume 16, Issue 14 , 2016 , Pages 2551-2571 ; 14730197 (ISSN) Karimi, M ; Bahrami, S ; Mirshekari, H ; Moosavi Basri, S. M ; Bakhshian Nik, A ; Aref, A. R ; Akbari, M ; Hamblin, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise... 

    Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1314-1330 ; 21691401 (ISSN) Samadishadlou, M ; Farshbaf, M ; Annabi, N ; Kavetskyy, T ; Khalilov, R ; Saghfi, S ; Akbarzadeh, A ; Mousavi, S ; Sharif University of Technology
    Abstract
    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent... 

    Light olefin production on the Co-Ni catalyst: Calcination conditions, and modeling and optimization of the process conditions by a statistical method

    , Article New Journal of Chemistry ; Volume 44, Issue 18 , 2020 , Pages 7467-7483 Arsalanfar, M ; Akbari, M ; Mirzaei, N ; Abdouss, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The present work is comprised of two main parts. In part 1 the Co-Ni/γ-Al2O3 catalyst was prepared using a sol-gel procedure. Then the effect of calcination variables including the calcination temperature and time on the catalytic performance for production of light olefins was investigated and optimized. The obtained results have shown that the catalyst which was calcined at 550 °C for 6 h has revealed the better catalytic performance for production of light olefins. In part 2 the effect of process conditions including the reaction temperature, H2/CO feed ratio and total reaction pressure on the catalytic performance (CO conversion%, (C2-C4) selectivity% and C5+ selectivity%) was... 

    Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Culicidae) in a malarious area of southern Iran

    , Article Journal of Vector Borne Diseases ; Volume 49, Issue 2 , Jun , 2012 , Pages 91-100 ; 09729062 (ISSN) Hanafi-Bojd, A. A ; Vatandoost, H ; Oshaghi, M. A ; Charrahy, Z ; Haghdoost, A. A ; Sedaghat, M. M ; Abedi, F ; Soltani, M ; Raeisi, A ; Sharif University of Technology
    JVBD  2012
    Abstract
    Background & objectives: Malaria is the most important mosquito-borne disease in Iran. It is endemic in south to southeastern part of the country. Knowledge about bio-ecology of vectors will support authorities for appropriate management of the disease. Bashagard district is one of the main endemic areas for malaria in south of Iran. This study was conducted to determine anopheline fauna, diversity and affinity in the area, characterization of larval habitats, and mapping their potential distribution across the district. Methods: The potential aquatic habitats for Anopheles larvae were extracted from Indian Remote Sensing Satellite (IRS) image and digital elevation model of the area using... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells

    , Article International Journal of Pharmaceutics ; Volume 618 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Vossoughi, M ; Bagherzadeh, M ; Pooshang Bagheri, K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, the potential of using MIL-100(Fe) metal–organic framework (MOF) for loading and controlling the release of dacarbazine (DTIC) was evaluated for in vitro treatment of melanoma. The drug loading was performed during the green synthesis of MIL-100(Fe) in an aqueous media without using any harmful solvents, to obtain MIL-DTIC. The surface of this structure was then coated with polyethylene glycol (PEG) in the same aqueous solution to synthesize MIL-DTIC-PEG. The synthesized samples were characterized using various methods. Their release profile was studied in phosphate-buffered saline (PBS) and simulated cutaneous medium (SCM). The cytotoxicity of DTIC and its nano-MOF... 

    Gold nanorods for drug and gene delivery: An overview of recent advancements

    , Article Pharmaceutics ; Volume 14, Issue 3 , 2022 ; 19994923 (ISSN) Jahangiri Manesh, A ; Mousazadeh, M ; Taji, S ; Bahmani, A ; Zarepour, A ; Zarrabi, A ; Sharifi, E ; Azimzadeh, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both... 

    Generic extraction medium: From highly polar to non-polar simultaneous determination

    , Article Analytica Chimica Acta ; Volume 1066 , 2019 , Pages 1-12 ; 00032670 (ISSN) Zeinali, S ; Khalilzadeh, M ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Sample preparation for non-target analysis is challenging due to the difficulty in the extraction of polar and non-polar analytes simultaneously. Most commercial solid sorbents lack the proper comprehensiveness for extraction of analytes with different physiochemical properties. A possible key is the combination of hydrophobic polymer and hydrophilic surface functional groups in solid based extraction methods in order to generate the susceptibility for retaining both polar and non-polar analytes. To pursue this goal, in this study, four polar groups including [sbnd]NH 2 , [sbnd]NO 2 , [sbnd]COOH, and [sbnd]COCH 3 were chemically bound to Amberlite XAD-4 substrate in order to prepare a... 

    Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line)

    , Article Toxicology in Vitro ; Volume 65 , 2020 Movahedi Shad, P ; Zare Karizi, S ; Safaie Javan, R ; Mirzaie, A ; Noorbazargan, H ; Akbarzadeh, I ; Rezaie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Oxaliplatin (OXA) has been widely used for treatment of colorectal cancer. In this study, to enhance antitumor and apoptosis efficacy, OXA was encapsulated in a novel folate conjugated hyaluronic acid coated alginate nanogels (F/HA/AL/OXA). The F/HA/AL/OXA nanogels were prepared by cross-linking process. The physico-chemical properties of F/HA/AL/OXA nanogels were characterized using scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, dynamic light scattering, and fluorescent spectrophotometry. The in-vitro antitumor activity of free OXA, AL, HA/AL, HA/AL/OXA and F/HA/AL/OXA nanogels were assessed using MTT assay against colorectal cancer... 

    Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method

    , Article Journal of Biomechanics ; Volume 98 , 2020 Kamali, A ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study presents a bilayer structure as a skin scaffold comprised of an electrospun sheet layer made of polycaprolactone and polyvinil alcohol and a porous hydrogel layer made of chitosan and gelatin. The hydrogel layer was fabricated by employing the freeze-gelation technique. The bilayer structure was achieved by pouring the hydrogel solution on the electrospun sheet at the bottom of a mold followed by the freeze-gelation technique to obtain a porous structure in the hydrogel. The hydrogel and hydrogel-electrospun samples were characterized by scanning electron microscopy, swelling, tensile strength, in vitro and in vivo analyses. From a mechanical strength standpoint, the combination... 

    Evaluation of the effects of process parameters on granule mean size in a conical high shear granulator using response surface methodology

    , Article Powder Technology ; Volume 237 , 2013 , Pages 186-190 ; 00325910 (ISSN) Ranjbarian, S ; Farhadi, F ; Sharif University of Technology
    2013
    Abstract
    Response surface methodology was used to investigate the effects of operating parameters such as impeller speed, binder mass and granulation time on the average size of granules produced in a lab scale conical high shear granulator. Two quadratic models were proposed to express granule mean size as a function of impeller speed and binder mass as well as impeller speed and granulation time. It was found out that in the studied domain, the influence of each parameter on granule size differs from one another. While increasing binder mass at constant quantity of powder increased the average size linearly, increasing impeller speed changed the mean size in accordance with quadratic trend. The... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under...