Loading...
Search for: physical-properties
0.007 seconds
Total 52 records

    A quasi-three-dimensional thermal model for multi-stream plate fin heat exchangers

    , Article Applied Thermal Engineering ; Volume 157 , 2019 ; 13594311 (ISSN) Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel pseudo-three-dimensional model is developed to find out both fluid and solid temperature distributions in multi-stream plate fin heat exchangers. In this simulation algorithm, heat exchangers can be in either parallel flow or cross flow configuration. The model considerations include: heat leakage of cap plates and side plates, conduction throughout the solid matrix of the heat exchanger, variable physical properties, and inlet mass flow rate maldistribution. Using the computational code, the effects of different factors such as: the number of layers, mass flow variation, inlet mass flow rate maldistribution, and stacking pattern on the thermal performance of the heat... 

    Stick-slip behavior of sessile drop on the surfaces with irregular roughnesses

    , Article Chemical Engineering Research and Design ; Volume 160 , 2020 , Pages 216-223 Azadi Tabar, M ; Shayesteh, M ; Shafiei, Y ; Ghazanfari, M. H ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    In this work, sessile drop and low-bond axisymmetric drop shape analysis methods were coupled to provide some new aspects on stick-slip behavior as well as stick time of a drop on calcite surfaces. Slightly hydrophobic calcite surfaces typified with three irregular roughnesses were used to create irregular surfaces to mimic defects for the water-calcite-air systems. Polishing papers of 200, 600, and 1200 grit and a polishing machine were used to prepare surfaces. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared, and atomic force microscopy techniques were employed to evaluate the chemical and physical properties of surfaces. A model was developed to predict... 

    DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials

    , Article Advances in Water Resources ; Volume 146 , 2020 Rabbani, A ; Babaei, M ; Shams, R ; Wang, Y. D ; Chung, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    DeePore2 is a deep learning workflow for rapid estimation of a wide range of porous material properties based on the binarized micro–tomography images. By combining naturally occurring porous textures we generated 17,700 semi–real 3–D micro–structures of porous geo–materials with size of 2563 voxels and 30 physical properties of each sample are calculated using physical simulations on the corresponding pore network models. Next, a designed feed–forward convolutional neural network (CNN) is trained based on the dataset to estimate several morphological, hydraulic, electrical, and mechanical characteristics of the porous material in a fraction of a second. In order to fine–tune the CNN design,... 

    Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications

    , Article Ceramics International ; Volume 46, Issue 8 , 2020 , Pages 10910-10916 Rahimi, S ; SharifianJazi, F ; Esmaeilkhanian, A ; Moradi, M ; Safi Samghabadi, A. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) have been widely applied in fixed partial prostheses as well as dental uses i.e. a substructure for crowns. However, Y-TZP has limited applications, which is due to the presence of defects in its microstructure introduced during the manufacturing process. Accordingly, due to Y-TZP limitations, the novel (X)Y-TZP- 20Al2O3-(80-X) SiO2 (X = 65, 70 and 75) ceramic nanocomposites were successfully fabricated via the powder metallurgy method. X-ray diffraction (XRD) patterns of commercial powders showed the stabilization of monoclinic zirconia (ZM) by increasing the silica content. In order to determine the fracture load and micro-bending... 

    Sequences of fracture toughness micromechanisms in PP/CaCO3 nanocomposites

    , Article Journal of Applied Polymer Science ; Volume 110, Issue 6 , 2008 , Pages 4040-4048 ; 00218995 (ISSN) Lesan Khosh, R ; Bagheri, R ; Zokaei, S ; Sharif University of Technology
    2008
    Abstract
    Mechanical properties and fracture toughness micromechanisms of copolypropylene filled with different amount of nanometric CaCO3 (5-15 wt %) were studied, J-integral fracture toughness was incorporated to measure the effect of incorporation of nanoparticle into PP matrix. Crack-tip damage zones and fracture surfaces were studied to investigate the effect of nanofiller content on fracture toughness micromechanisms. It was found that nanofiller acted as a nucleating agent and decreased the spherulite size of polypropylene significantly, J-integral fracture toughness (Jc) of nanocomposites was improved dramatically. The Jc value increased up to approximately two times that of pure PP at 5 wt %... 

    2D MXene nanocomposites: electrochemical and biomedical applications

    , Article Environmental Science: Nano ; Volume 9, Issue 11 , 2022 , Pages 4038-4068 ; 20518153 (ISSN) Ramezani Farani, M ; Nourmohammadi Khiarak, B ; Tao, R ; Wang, Z ; Ahmadi, S ; Hassanpour, M ; Rabiee, M ; Saeb, M. R ; Lima, E. C ; Rabiee, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic conductivity, stability, and exclusive physiochemical performances make them promising materials for electrochemical and biomedical applications, including CO2 reduction, H2 evolution, energy conversion and storage, supercapacitors, stimuli-responsive drug delivery... 

    Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 55, Issue 4 , January , 2012 , Pages 762-772 ; 00179310 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye-Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be... 

    Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols

    , Article Expert Systems with Applications ; Volume 38, Issue 3 , 2011 , Pages 1738-1747 ; 09574174 (ISSN) Rohani, A. A ; Pazuki, G ; Najafabadi, H. A ; Seyfi, S ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Vapor pressure and liquid density of 20 pure alcohols were correlated using an artificial neural network (ANN) system and statistical associating fluid theory (SAFT) equation of state. The SAFT equation has five adjustable parameters as temperature-independent segment diameter, square-well energy, number of segment per chain, association energy and association volume. These parameters can be obtained by a non-linear regression method using the experimental vapor pressure and liquid density data. In continue, the vapor pressure and liquid densities of pure alcohols were estimated by using an artificial neural network (ANN) system. In the neural network system, it is assumed that thermodynamic... 

    Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)

    , Article Thin Solid Films ; Volume 518, Issue 15 , 2010 , Pages 4281-4289 ; 00406090 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Stroeve, P ; Sohrabi, A ; Sharif University of Technology
    2010
    Abstract
    Magnetite (Fe3O4) nanostructures with different morphologies including uniform nanoparticles, magnetic beads and nanorods were synthesized via a co-precipitation method. The synthesis process was performed at various temperatures in the presence of polyvinyl alcohol (PVA) at different concentrations. It is shown that small amounts of PVA act as a template in hot water (70 °C), leading to the oriented growth of Fe3O4 nanorods, which was confirmed by selected area electron diffraction. Individually coated magnetite nanoparticles and magnetic beads were formed at a relatively lower temperature of 30 °C in the folded polymer molecules due to the thermo-physical properties of PVA. When a moderate... 

    Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: A molecular dynamic simulation

    , Article Molecular Physics ; Volume 106, Issue 8 , 2008 , Pages 1015-1023 ; 00268976 (ISSN) Jahangiri, S ; Taghikhani, M ; Behnejad, H ; Ahmadi, S. J ; Sharif University of Technology
    2008
    Abstract
    In this work, molecular dynamic simulation of the mixture of imidazolium based ionic liquids with alcohols is implemented in order to investigate mixing excess properties and some structural and physical properties of the mixture. Excess volumes and enthalpies are evaluated for 11 different mole fractions of ionic liquids at each 0.1, in the range of 0 to 1. Radial distribution function, cohesive energy density, potential of mean force, solvation energy, and diffusion coefficient are reported and analysed. The effects of the cationic alkyl chain length, in comparison with changes of the anions, on these properties are reported. Results reveal that the methanol molecule participates with its... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of... 

    Effects of rubber curing ingredients and PhenolicResin on mechanical, thermal, and morphological characteristics of rubber/phenolic-resin blends

    , Article Journal of Applied Polymer Science ; Volume 108, Issue 6 , 2008 , Pages 3808-3821 ; 00218995 (ISSN) Derakhshandeh, B ; Shojaei, A ; Faghihi, M ; Sharif University of Technology
    2008
    Abstract
    This article examines the physical and mechanical characteristics of mixtures of two different synthetic rubbers, namely styrene-butadiene rubber (SBR) and nitril-butadiene rubber (NBR), with novolac type phenolicresin (PH). According to Taguchi experimental design method, it is shown that the addition of PH increases the crosslinking density of rubber phase probably due to its curative effects. Thermal analysis of the blends indicates that, contrary to NBR/PH blend, thermal stability of SBR/PH blend is dependent on sulfur content due to predominant polysulfidic crosslinks formed in SBR. Slight shift in glass-transition temperature (Tg) of pure SBR and NBR vulcanizates by the addition of PH...