Loading...
Search for: piles
0.012 seconds
Total 123 records

    Investigation of the Seismic Behavior of the Soil-Pile System with Three-Dimensional Nonlinear Modeling

    , M.Sc. Thesis Sharif University of Technology Afsaneh Borzeshi, Sajjad (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    A large number of structures and substructures, such as piles, have damaged or even yielded the entire structure during seismic loading. The kinematic interaction of piles under seismic loading has been widely studied from analytical, experimental, and numerical perspectives. In numerical modeling, most existing literature relies on simplified approaches to describe the soil-pile interaction, which leads to the need for more reliable and comprehensive research. In this research, the seismic response of the soil-pile system was investigated through a fully nonlinear three-dimensional numerical analysis in the time domain using the FLAC3D program. This model simulates the dependence of soil... 

    Mechanical properties and γ/γ' interfacial misfit network evolution: A study towards the creep behavior of Ni-based single crystal superalloys

    , Article Mechanics of Materials ; Volume 171 , 2022 ; 01676636 (ISSN) Khoei, A. R ; Youzi, M ; Tolooei Eshlaghi, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The aim of this study is to investigate the role of the temperature, stress, and rhenium (Re) on the γ/γ' interfacial misfit dislocation network and mechanical response of Ni-based single crystal superalloys. After aging at elevated temperatures, mismatch between the two phases results in an interfacial dislocation network to relieve the coherency stress. Molecular dynamics (MD) simulations have been performed to study the properties of the (100), (110), and (111) phase interface crystallographic directions. Increasing temperature disperses the atomic potential energy at the interface diminishing the strength and stability of the networks. In the case of loading, when a constant strain rate... 

    Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors

    , Article International Journal of Geotechnical Engineering ; Volume 16, Issue 7 , 2022 , Pages 903-915 ; 19386362 (ISSN) Ahmadi, A ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This paper presents a case study and numerical simulations of a corner of a deep excavation in Tehran supported by soldier piles and ground anchors. This study focuses on the differences between 2D and 3D numerical modelling in estimating the wall deflection at the corner locations of the excavation. Furthermore, the performance of modelling with Mohr–Coulomb constitutive law was compared with the result of a hardening soil model. The modelling procedure was calibrated against a full-scale instrumented tieback wall at Texas A&M University and the monitoring data of the excavation project. The results indicated that the hardening soil model yields reasonable predictions of wall deflection in... 

    Sensitivity analysis of jacket-type offshore platforms under extreme waves

    , Article Journal of Constructional Steel Research ; Volume 83 , 2013 , Pages 147-155 ; 0143974X (ISSN) Hezarjaribi, M ; Bahaari, M. R ; Bagheri, V ; Ebrahimian, H ; Sharif University of Technology
    2013
    Abstract
    Jacket-type offshore platforms play an important role in oil and gas industries in shallow and intermediate water depths such as Persian Gulf region. Such important structures need accurate considerations in analysis, design and assessment procedures. In this paper, nonlinear response of jacket-type platforms against extreme waves is examined utilizing sensitivity analyses. Results of this paper can reduce the number of random variables and consequently the computational effort in reliability analysis of jacket platforms, noticeably. Effects of foundation modeling have been neglected in majority of researches on the response of jacket platforms against wave loads. As nonlinear response of... 

    Numerical Study of the Effect of Liquefaction-Induced Lateral Spreading on a group of piles

    , M.Sc. Thesis Sharif University of Technology Dehnavi, Alireza (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    The behavior of pile foundations under earthquake loading is an important issue that affects the performance of structures. Design procedures have been developed for evaluating pile behavior under earthquake loading; however, the application of these procedures to cases involving liquefiable ground is uncertain. The performance of piles in liquefied soil layers is much more complex than that of non-liquefying soil layers because not only the superstructure and the surrounding soil exert different dynamic loads on pile, but also the stiffness and shear strength of surrounding soil diminishes over time due to both non-linear behavior of soil and pore water pressure generation. In this... 

    Effects of Liquefaction on 2×2 and 3×3 Stiff and Flexible Pile Groups

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Anahita (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Liquefaction has a profound effect on buildings, bridges, buried pipes and other engineering structures. This phenomenon can lead to the sliding of huge earth masses, submersion and bending of substantial structures, uplift of buried light structures and collapse of retaining walls. In recorded earthquakes, liquefaction has caused major damage to structures and deep foundations, proving that pile foundations are not designed to withstand at liquefaction condition. Considerable damages in pile foundations due to liquefaction in destructive earthquakes has called for extensive study and research concerning the behavior and response of piles under the influence of liquefaction, resulting in... 

    Numerical Simulation of Effect of Lateral Spreading Due to Liquefaction on Piles and Estimate Soil Lateral Displacement Pattern by Image Processing

    , M.Sc. Thesis Sharif University of Technology Sayaf, Hiva (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    In recent earthquakes piles have been severely damaged due to liquefaction-induced lateral spreading. Liquefaction causes lateral spreading in gently sloped saturated soft granular soils, leading to significant damage in structures and deep foundations. Although in recent years many studies have focused on different aspects of this phenomenon, the complex nature of the dynamic interaction between piles and liquefied soil is not yet fully understood. This potential damages are of high degree of importance in southern and northern coastal areas of Iran where several ports and critical facilities are located. The present study focuses on the behavior of a 2x2 pile group against lateral loads... 

    Fluctuations in the order of System Size in the Avalanche-Size Distribution of Sandpiles Model

    , M.Sc. Thesis Sharif University of Technology Saadat, Elaheh (Author) ; Moghimi Araghi, Saman (Supervisor)
    Abstract
    Since the concept of Self-Organized Criticality was introduced in terms of BTW Sandpiles model, its major features have been known as broad power law distributions without any tuning parameters. In some selforganized critical systems like brain and neural networks, some evidences and experiments show a periodic or non-power law distribution of avalanches in addition to the power-law distributions of avalanches. In this thesis we try to observe the same phenomenon in the well-known SOC models, namely the BTW and Manna sandpile models. We have considered small lattice sizes with periodic boundary conditions and a small amount of dissipation. Within such conditions we observe a periodic-like... 

    An Investigation On The Effects Of Liquefaction Induced Lateral Spreading on a 3×3 Pile Group Using Shake Table Test and Laminar Shear Box and Consideration of Boundary Conditions on Physical Model Results

    , M.Sc. Thesis Sharif University of Technology Salaripour, Saman (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Lateral spreading is defined as finite lateral displacement of mildly sloping grounds or those ending in free faces induced by liquefaction. Severe damages of pile groups due to lateral spreading in past earthquakes has been reported. Since earthquake is unavoidable, it is necessary to study the response of piles, especially pile groups, to liquefaction induced lateral spreading. Until now, a number of methods have been developed by researchers for design of deep foundations against lateral spreading, but reported failure of piles in last earthquakes indicates that these methods are associated with high uncertainties. This is due to the lack of laboratory and experimental data to evaluate... 

    Soil-structure Interaction in Geothermal Foundations

    , M.Sc. Thesis Sharif University of Technology Moradshahi, Aria (Author) ; Khosravi, Ali (Supervisor)
    Abstract
    Regarding the issue that significant amount of energy consumption in the world is dedicated to heating and cooling of the buildings, by using traditional methods of heating and cooling, the environment is facing serious problems like green house gases. There were various techniques for decreasing the amount of contaminants stem from this process. Heat-exchanger energy piles are one of the most common methods that will result in economic usage of energy resources. Assessing the long-term behavior of the energy piles requires comprehensive understanding of the complex interaction between soil and pile subjected to mechanical and thermal loadings. Several numerical and analytical methods have... 

    Study the Effect of Staged Construction and Behavior of Concave Corner of Excavation Stabilized by Soldier Piles with Pretensioned Anchor by 3D Numerical Modeling

    , M.Sc. Thesis Sharif University of Technology Mehdizadeh, Mehdi (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    In recent years, due to the development of cities and population growth, the number of underground floors and the depth of excavations have increased. Sustainability of excavation and control of deformation due to excavation process has always been considered as one of the important issues in geotechnical engineering. One of the most commonly used systems for deep excavation, especially in urban areas, is the soldier pile wall with tiebacks. This system consists of anchoring on soldier piles that are performed at horizontal distances around the excavation range. The cables have two parts. Unbond and bond length that, when pretensioned, have the task of transfering load out of the wedge of... 

    Synaptic Plasticity in Brain Networks Based on Sandpile Models

    , M.Sc. Thesis Sharif University of Technology Mahdi Soltani, Saeed (Author) ; Moghimi Araghi, Saman (Supervisor)
    Abstract
    Based on the large number of interacting cells and their abundant connections, human brain is a complex system able to produce interesting collective behaviors. Studying these collective behaviors needs special tools that potentially could be found in the context of the statistical physics of critical phenomena, as these tools are specifically developed for understanding the large-scale properties of physical systems. Starting with the introduction of the self-organized criticality in the late 80s, a number of physicists have tried to utilize this concept for explaining some aspects of the brain properties, such as memory and learnig. The observation of the neuronal avalanches in the early... 

    Physical Modeling of Group Pile Response to Liquefaction-Induced Lateral Spreading by Shaking Table Tests

    , M.Sc. Thesis Sharif University of Technology Asefzadeh, Arian (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    In recent earthquakes piles have been severely damaged due to liquefaction-induced lateral spreading. Liquefaction causes lateral spreading in gently sloped saturated soft granular soils, leading to significant damage in structures and deep foundations. Although in recent years many studies have focused on different aspects of this phenomenon, the complex nature of the dynamic interaction between piles and liquefied soil is not yet fully understood. Thus more studies in this regard is inevitable. The present research focuses on the discussion and analysis of two large scale shaking table tests of 2x2 and 3x3 group piles. A three layer soil profile was used for the model, consisting of one... 

    Effects of Pile Soil Structure Interaction on the Seismic Response of a 6 Story Building

    , M.Sc. Thesis Sharif University of Technology Aminikhah, Ahmad (Author) ; Ahmadi, Mohammad Mahdi (Supervisor)
    Abstract
    Numerous structures which are involved in seismic soil-pile-structure interaction have been damaged، failure in piles or even collapsed that can’t predict. Because of difficult modeling in soil، pile، structure interaction prediction the response of structure is impossible. In this study with using the finite element Abaqus software tries to understand the effect of soil pile structure interaction in structure response. By using the time history of Elcentro، structure with different boundary conditions were analyzed and the response of them were compared. Models have different boundary condition such as fixed base، pile groups and pile raft. Also in this study the effect of mat in... 

    Analysis of Bearing Capacity and Settlement of Piled-Raft Foundation on Clayey Soils

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Khaledi, Masoud (Author) ; Ahmadi, Mohammad Mahdi (Supervisor)
    Abstract
    Investigating the behavior of piled-raft foundations is a three-dimensional problem. The shape and location of the piles in the raft as well as the complex interaction of the soil-structure in these foundations should be analyzed in a three-dimensional fashion to indicate the real behavior of this type of foundations. The soil must also be analyzed in a nonlinear state to achieve the correct bearing capacity of these foundations. In this research, a nonlinear 3D analysis was performed using FLAC3D to investigate the behavior of piled-raft foundations, and the effect of various factors such as the length, arrangement and number of the piles, the loading level and the thickness of the raft, on... 

    The Physical Modeling and Analysis of Seismic Soil-Pile Interaction in Unsaturated Sand Using Geotechincal Centrifuge

    , M.Sc. Thesis Sharif University of Technology Ghadirianniari, Sahar (Author) ; Khosravi, Ali (Supervisor)
    Abstract
    The seismic behavior of pile-supported systems has been an active area of research over the past decades. However, focus has mostly been on evaluating the seismic response of structures embedded in either dry or fully saturated, especially liquefying soil conditions. In this study, a series of dynamic centrifuge tests have been conducted to investigate the effects of soil’s degree of saturation on the seismic behavior of pile-supported superstructures. The scaled physical model tests were carried out on two distinct pile-mass systems embedded in uniform sand layers. A steady state infiltration technique was used to control matric suction profiles in the sand layer prior to shaking. The... 

    Structural-Geotechnical Interactions in Piled Raft Foundations (Prf) Design for High Rise Buildings Under Earthquake Loading

    , M.Sc. Thesis Sharif University of Technology Eslami, Mohammad (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    It has been realized that the raft (mat) foundations are capable of bearing very large loads when they are assisted with a pile group. The contribution of both raft and piles to carry the surcharge loads is taken into account, considering the stiffness and strength of involved elements in the system, i.e. piles, raft and surrounding soil. Piles are usually required to ensure the stability of the foundation and to act as settlement reducers especially for high rise buildings. The present study focuses on both kinematic and inertial effects of piled foundations and piled raft foundations under earthquake loading. The Finite Element Method (FEM) via ABAQUS will be used as an appropriate tool to... 

    Investigation of the Effects of Successive Liquefaction Occurrence on Piles Located in Level Ground with an Inclined Base Layer-A Physical 1g Shake Table and Laminar Shear Box Model

    , M.Sc. Thesis Sharif University of Technology Moradi, Mohammad (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    The phenomenon of soil liquefaction has caused significant damage to deep foundations of engineering structures such as bridges and buildings in past earthquakes. In recent years, many researchers have studied the effects of soil liquefaction on the pile response, but there are still many unknowns that require further research and study. The present study is part of a comprehensive research that involves several Ph.D. and master students at Sharif University of Technology (SUT). In this study, the effects of soil liquefaction on two pile 2×2 groups (one with a lumped mass and another without) in a level ground with a sloping bed were investigated. A surface non-liquefied layer was also... 

    Investigation of Effects of Successive Liquefaction Occurrence on Piles Located in Level Ground With an Inclined Base Layer with Using Stone Cloumns – a Physical 1g Shake Table and Laminar Shear Box Model

    , M.Sc. Thesis Sharif University of Technology Dehghanpour Farashah, Ali (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Lateral spreading is defined as finite lateral displacement of mildly sloping grounds or those ending in free faces induced by liquefaction. The phenomenon of lateral spreading caused by liquefaction in coastal areas and mildly sloping grounds has caused significant damage to deep foundations of engineering structures such as bridge and buildings in severe earthquakes. Since earthquake is unavoidable, therefore, it is necessary to provide appropriate solution to reduce the effects of liquefaction induced lateral spreading. Despite conducting various laboratory and field studies by previous researchers, there is still no comprehensive approach to evaluate the effects of lateral spreading on... 

    Studying the Effects of Liquefaction Induced Lateral Spreading on Piles and Evaluation of a Remedial Measure Against Pile Damaging Due to These Effects with Shake Table Tests Using Laminar Shear Box

    , Ph.D. Dissertation Sharif University of Technology Rajabigol, Morteza (Author) ; Haeri, Mohsen (Supervisor) ; Kavand, Ali (Co-Supervisor)
    Abstract
    Liquefaction-induced lateral spreading is one of the most challenging problems in geotechnical earthquake engineering. This phenomenon may impose severe damages on deep foundations in large earthquakes. In this study, six physical modeling are designed, built and tested to investigate the effects of lateral spreading on deep foundations and also assess one mitigation method. The experiments were conducted using 1g shake table of Sharif university of technology. In this respect, a large laminar shear box with outer dimensions of 420, 240 and 180 cm was designed and constructed. The laminar shear box consisted of 23 steel laminates with inner dimensions of 306×172 cm. Four experiments were...