Loading...
Search for: polymerization
0.007 seconds
Total 386 records

    Design, modeling and optimization of a novel two DOF polymeric electro-thermal micro-actuator

    , Article Applied Mechanics and Materials ; Vol. 307 , 2013 , pp. 112-116 ; ISSN: 16609336 ; ISBN: 9783037856598 Sheikhbahaie, R ; Alasty, A ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, design, simulation and optimization of a novel electrothermally-activated polymeric microactuator capable of generating combination of bidirectional lateral and rotational motions are presented. The composite structure of this actuator is consisted of a symmetric meandered shape silicon skeleton, a SU8 thermal expandable polymer and a thin film chrome layer heater. This actuator is controlled by applying appropriate voltages on its four terminals. With the purpose of dimension optimization, a numerical parametric study is executed. The modeled actuator which is 1560 ?m long, 156 ?m wide and 30 ?m thick, demonstrates a remarkable lateral displacement of 23 ?m at power... 

    Submicron nanoporous polyacrylamide beads with tunable size for verapamil imprinting

    , Article Journal of Applied Polymer Science ; Volume 125, Issue 1 , 2012 , Pages 189-199 ; 00218995 (ISSN) Nematollahzadeh, A ; Abdekhodaie, M. J ; Shojaei, A ; Sharif University of Technology
    2012
    Abstract
    Submicron sized polyacrylamide particles were prepared via modified precipitation polymerization method. Experimental design based on Taguchi approach was employed to study the influence of the polymerization composition including monomer (acrylamide), crosslinker (methylenebisacrylamide), initiator (azobisisobutyronitrile), and modifier (polyvinylpyrrolidone, K-30), on the size and morphology of the particles. Varying the polymerization composition, submicron-particles with sizes ranging between 100 and 600 nm were achieved. In all the cases, polydispersity index (PDI) of the particle size was found to be almost 1 indicating uniformity of the particle size. The concentration of crosslinker... 

    Preparation and study of bi-supported Ziegler-Natta catalyst with nano graphene oxide and magnesium ethoxide supports for polymerization of polyethylene

    , Article Polymer Science - Series B ; Volume 58, Issue 3 , 2016 , Pages 271-277 ; 15600904 (ISSN) Kheradmand, A ; Ramazani SaadatAbadi, A ; Khorasheh, F ; Baghalha, M ; Bahrami, H ; Sharif University of Technology
    Maik Nauka-Interperiodica Publishing  2016
    Abstract
    In this study, we have reported the preparation of bi-supported Ziegler-Natta catalysts using magnesium ethoxide and graphene oxide as support. The polymerization process was carried out in slurry phase using triisobutylaluminum as a co-catalyst.The XRD analysis of TiCl4/graphene oxide/Mg(OEt)2 catalyst demonstrated that the space between the layers of graphene oxide had increased to 0.2 nm.The catalyst was characterized by XPS, BET, BJH, SEM, and TGA. The catalyst activity was studied for various Al/Ti molar ratios, and the catalyst activity was optimum at Al/Ti molar ratio of 315. © 2016, Pleiades Publishing, Ltd  

    Synthesis, characterization, and kinetic investigation of acrylic monomers derived from acetaminophen and ρ-cresol as model drug molecules

    , Article Journal of Applied Polymer Science ; Volume 100, Issue 6 , 2006 , Pages 4369-4374 ; 00218995 (ISSN) Vezvaie, M ; Taghizadeh, S. M ; Gholami, M. R ; Sharif University of Technology
    2006
    Abstract
    In this work, the synthesis, characterization, and kinetic investigation of the free-radical polymerization of 4-acetylaminobenzene propenoic ester (ABPE) and 4-methylbenzene propenoic ester (MBPE) were studied. The kinetic behaviors of ABPE and MBPE in the polymerization initiated by azobisisobutyronitrile in dimethylformamide solutions at temperatures between 50 and 120°C were investigated, and experimental and theoretical conversion-time curves were compared. Both monomers showed a polymerization ceiling temperature (T c ). Tc was calculated with experimental values of k pk1/2 with a constant concentration of 0.7 mol/L for monomers. Tc was about 141 and 131 °C for ABPE and MBPE,... 

    Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels

    , Article Polymers for Advanced Technologies ; Volume 16, Issue 9 , 2005 , Pages 659-666 ; 10427147 (ISSN) Kabiri, K ; Faraji Dana, S ; Zohuriaan Mehr, M. J ; Sharif University of Technology
    2005
    Abstract
    Novel hydrogels based on zwitterionic monomer [3-(methacrylamido)propyl] dimethyl (3-sulfopropyl) ammonium hydroxide (MPDSAH) and a strong acid monomer (2-acrylamido-2-methylpropane sulfonic acid, AMPS) were synthesized through solution polymerization under normal conditions to achieve nearly quantitative gel yield. The structure of the gels was confirmed using infrared spectroscopy. Thermal properties were simultaneously studied by differential scanning calorimetry and thermogravimetric analysis (DSC/TGA). The effects of the polymerization variables on the swelling capacity of the products were investigated. It was found that, in a certain range of the monomers mol ratio, increase of AMPS... 

    Investigation Properties of Polyethylene/ Carbon Nanotube Nanocomposites Prepared Via in Situ Polymerization

    , M.Sc. Thesis Sharif University of Technology Meschi Amoli, Behnam (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    In this research UHMWPE/MWCNT nanocomposites with different concentrations of nanotubes (0.5, 1.5, 2.5, 3.5 wt %) were prepared via in situ polymerization using a novel Bi-supported Ziegler-Natta catalytic systems. Magnesium etoxide and Multi wall carbon nanotubes functionalized by hydroxyl groups were used as supports of catalyst. TiCl4 accompanied by triethylaluminum constituted Ziegler-Natta catalytic system. Preparation of catalyst and polymerization were done in slurry phase under the argon atmosphere. Support of catalyst on MWCNT was investigated using Fourier Transform Infrared Spectroscopy (FTIR). The results confirmed interaction between catalyst and hydroxyl groups on the surface... 

    Manufacturing and Investigation the Properties of Polyethylene/ Fumed Silica Nanocomposites Via in situ Polymerization

    , M.Sc. Thesis Sharif University of Technology Ghahri Saremi, Maysam (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    In this research UHMWPE/FUMED SILICA nanocomposites with different concentrations of nano fumed silica (0.5, 1.5, 2.5, 4.5 wt %) were prepared via in situ polymerization using a novel Bi-supported Ziegler-Natta catalytic systems. Magnesium etoxide and Fumed Silica functionalized by hydroxyl groups were used as supports of catalyst. TiCl4 accompanied by triethylaluminum constituted Ziegler-Natta catalytic system. Preparation of catalyst and polymerization were done in slurry phase under the argon atmosphere. Scanning Electron Microscopy (SEM) images also certified very good dispersion of fumed silica throughout PE matrix. Intrinsic viscosity measurements showed high molecular weight for... 

    Preparation and Investigating of Polyolephine/graphene Oxide Nanocomposites Via In-situ Ziegler-natta Polymerization

    , M.Sc. Thesis Sharif University of Technology Bahrami, Hiva (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    The main object of this thesis is preparation and investigation of polyolophine/graphene oxide nanocomposites by using bi-supported Ziegler-Natta catalytic system and in-situ polymerization. Magnesium ethoxide and graphene oxide were used as supports of catalyst. TiCl4 was accompanied by triisobutyl aluminum (tibia) and diisobutyl phthalate (DIBP) as an electron donor constituting Ziegler-Natta catalytic system. Preparation of catalyst and polymerization were taken place in slurry phase under the argon atmosphere. At the beginning of the polymerization experiment, several type of nanocomposites were made under various conditions (such as different Al/Ti molar ratio) to find optimum condition... 

    Optimization of conditions in ultrafiltration treatment of produced water by polymeric membrane using Taguchi approach

    , Article Desalination and Water Treatment ; Volume 51, Issue 40-42 , 2013 , Pages 7499-7508 ; 19443994 (ISSN) Reyhani, A ; Rekabdar, F ; Hemmati, M ; SafeKordi, A. A ; Ahmadi, M ; Sharif University of Technology
    Desalination Publications  2013
    Abstract
    In this study, the ultrafiltration of produced water was studied using a two-stage ultrafiltration process. In the first stage, the influences of operating parameters, including transmembrane pressure, temperature, and cross-flow velocity on the amount of flux decline caused by membrane fouling, were investigated using a polymeric membrane. In order to design the experiments and optimize the experimental results, the Taguchi method was applied. L9 (33) orthogonal array for experimental planning and the smaller-the-better response category was selected to obtain optimum conditions because the lowest flux decline was our aim. Analysis of variance was used to determine the most important... 

    Electrocatalytic Oxidation of 1-Propanol and 2-Propanol on Electro-active Films Derived from Ni II-(N,N′-bis(2-Hydroxy, 3-Methoxy Benzaldehyde)-1,2-Propandiimine) Modified Glassy Carbon Electrode

    , Article Electrocatalysis ; Volume 2, Issue 3 , Volume 2, Issue 3 , 2011 , Pages 163-171 ; 18682529 (ISSN) Jafarian, M ; Rashvand avei, M ; Gobal, F ; Rayati, S ; Mahjani, M. G ; Sharif University of Technology
    Abstract
    Complexes of Ni II-(N,N′-bis(2-hydroxy, 3-methoxy benzaldehyde)-1,2-propandiimine) can be electro-polymerized onto GC electrode in an alkaline solution to give an electro-active film strongly adhered on the electrode surface. In alkaline solution, this poly-(Ni II{sal-1,2-pn(3-OMe) 2})/GC film shows the typical voltammetric response of a surface-immobilized redox couple, as can be anticipated for the Ni 2+/Ni 3+ transitions into the film. In addition, the film exhibits a potent and persistent electro-catalytic activity towards the oxidation of 1- and 2-propanol. In CV studies, in the presence of these alcohols, poly-(Ni II{sal-1,2-pn(3-OMe) 2})/GC electrode shows a new oxidation peak for the... 

    Investigation of Thermomechanical Properties of UHMWPE/Graphene Oxide Nanocomposites Prepared by in situ Ziegler-Natta Polymerization

    , Article Advances in Polymer Technology ; Volume 34, Issue 4 , February , 2015 ; 07306679 (ISSN) Bahrami, H ; Ramazani, A.S.A ; Kheradmand, A ; Shafiee, M ; Baniasadi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    The graphene-based Ziegler-Natta catalyst has been used to prepare ultrahigh molecular weight polyethylene/graphene oxide (UHMWPE/GO) nanocomposite via in situ polymerization. The morphological investigations have been conducted using X-ray diffraction patterns and scanning electron microscopy method. The obtained results indicated that no diffraction peak is detected in a GO pattern, which could be due to the exfoliation of graphene nanosheets in the UHMWPE matrix. Morphological investigations indicated that GO nanosheets are dispersed almost uniformly in polymeric matrix, and that there should exist a good interaction between nanofillers and matrix. The mechanical properties of the... 

    Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler-Natta catalyst

    , Article Journal of Applied Polymer Science ; Volume 115, Issue 1 , 2010 , Pages 308-314 ; 00218995 (ISSN) Ramazani, S. A. A ; Tavakolzadeh, F ; Baniasadi, H ; Sharif University of Technology
    Abstract
    In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler-Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential... 

    High-performance carboxylate superplasticizers for concretes: Interplay between the polymerization temperature and properties

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 23 , 2017 ; 00218995 (ISSN) Tajbakhshian, A ; Saeb, M. R ; Jafari, S. H ; Najafi, F ; Khonakdar, H. A ; Ayoubi, M ; Hassanpour Asl, F ; Sharif University of Technology
    Abstract
    Polycarboxylate superplasticizers based on acrylic acid (AA) and maleic anhydride (MAn) were synthesized via free-radical copolymerization with an ethylene glycol monomer and characterized. The copolymerization temperature (ranging from 50 to 90 °C) appeared to be the key operating factor governing the chemical structure of the superplasticizers. The chemical structures of the products were analyzed by gel permeation chromatography, whereas an optimized sample was further analyzed by Fourier transform infrared spectroscopy and 1H-NMR. Superplasticizers of the AA and MAn classes were then incorporated into concrete, and their performances were measured by slump and slump loss tests, where a... 

    A flat polymeric membrane sensor for carbon dioxide/nitrogen gas mixture

    , Article Chemical Engineering Communications ; Volume 204, Issue 4 , 2017 , Pages 445-452 ; 00986445 (ISSN) Shabani, E ; Mousavi, S. A ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    A gas sensor was developed to measure the concentration of binary gas mixtures. This sensor works based on the permeability change of different gas mixtures across the polymeric membranes. Although high values of permeability and selectivity are needed for an ideal separation, the performance of this sensor mainly depends on the permeability factor. Polysulfone and silicone rubber were applied as the membrane base and coat, respectively. Moreover, in contrast to existing polymeric sensors that use hollow fibers, the present sensor is made of flat membranes. This new design is cheaper, smaller, and easier to use in comparison to the hollow fiber polymeric sensors. In order to test the sensor... 

    Electrospun nanofibers

    , Article Solid-Phase Extraction ; 2019 , Pages 311-339 ; 9780128169063 (ISBN) Bagheri, H ; Rezvani, O ; Zeinali, S ; Asgari, S ; Golzari Aqda, T ; Manshaei, F ; Sharif University of Technology
    Elsevier  2019
    Abstract
    Electrostatic fiber fabrication technique has evinced more interest and attention in recent years, owing to its versatility, reliability, and potential for applications in diverse fields, particularly separation, extraction, and filtration. The sub-micro fibers are generated by employing strong electric field on polymeric solutions or melt is led to the soft nanometric mats. So far, more than 100 polymers have been Electrospun and this number is gradually increasing. Over recent decades, a remarkable variety of electrospun nanofibers as promising and authentic extracting platforms have been synthesized. They offer various advantages including high surface area-to-volume ratio and tunable... 

    Electrospun nanofibers

    , Article Solid-Phase Extraction ; 2019 , Pages 311-339 ; 9780128169063 (ISBN) Bagheri, H ; Rezvani, O ; Zeinali, S ; Asgari, S ; Aqda, T. G ; Manshaei, F ; Sharif University of Technology
    Elsevier  2019
    Abstract
    Electrostatic fiber fabrication technique has evinced more interest and attention in recent years, owing to its versatility, reliability, and potential for applications in diverse fields, particularly separation, extraction, and filtration. The sub-micro fibers are generated by employing strong electric field on polymeric solutions or melt is led to the soft nanometric mats. So far, more than 100 polymers have been Electrospun and this number is gradually increasing. Over recent decades, a remarkable variety of electrospun nanofibers as promising and authentic extracting platforms have been synthesized. They offer various advantages including high surface area-to-volume ratio and tunable... 

    In situ emulsion polymerization and characterization of PVAc nanocomposites including colloidal silica nanoparticles for wood specimens bonding

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 15 , 2020 Azamian Jazi, M ; Ramezani Saadat Abadi, A ; Haddadi, S. A ; Ghaderi, S ; Azamian, F ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc... 

    Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposite with core-shell structure via RAFT polymerization

    , Article Composites Science and Technology ; Volume 188 , 2020 Pourjavadi, A ; Rahemipoor, S ; Kohestanian, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A novel multi stimuli-responsive silica nanocomposite with a core-shell structure is synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The SiO2 nanoparticles are chemically modified via 3-(trimethoxylsilyl) propyl methacrylate (MPS) which they are used in the core of nanocomposite. The macro-RAFT agent is prepared by RAFT polymerization of N-isopropylacrylamide (NIPAM), spirooxazine acryloyl monomer (SOM), and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT as a RAFT agent). Finally, the smart nanocomposite is prepared by reaction between the macro-RAFT agent and 2-(Dimethylamino) ethyl methacrylate (DMAEMA) as a monomer. SOM as a... 

    Temperature sensitive superabsorbent hydrogels from poly(N-t-butyl acrylamide-co-acrylamide) grafted on sodium alginate

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , December , 2008 , Pages 177-183 ; 10221360 (ISSN) Pourjavadi, A ; Samadi, M ; Ghasemzadeh, H ; Sharif University of Technology
    2008
    Abstract
    Temperature-sensitive hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), and sodium alginate were prepared by free radical polymerization method. Methylenebisacrylamide (MBA) and amonium persulfate (APS) were applied as water soluble crosslinker and initiator, respectively. The chemical structure of the hydrogels was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TCA) methods. Morphology of the samples was examined by scanning electron microscopy (SEM). By changing the initial TBA/AAm mole ratios, hydrogels with different swelling properties were obtained. The rate parameters were found to be 2.0, 2.4, and 3.5 min for the superabsorbents with AAm/TBA weight... 

    Inferential closed-loop control of particle size distribution for styrene emulsion polymerization

    , Article Chemical Engineering Science ; Volume 63, Issue 9 , 2008 , Pages 2378-2390 ; 00092509 (ISSN) Abedini, H ; Shahrokhi, M ; Sharif University of Technology
    2008
    Abstract
    In this work, a new control strategy for controlling the particle size distribution (PSD) in emulsion polymerization has been proposed. It is shown that the desired PSD can be achieved by controlling the free surfactant concentration which in turn can be done by manipulating the surfactant feed rate. Simulation results show that the closed-loop control of free surfactant concentration results in a better control of PSD compared to open-loop control strategy, in presence of model mismatch and disturbances. Since the on-line measuring of ionic free surfactant concentration is difficult, conductivity which is related to it is measured instead and used for control purposes. The closed-loop...