Loading...
Search for: polymerization
0.011 seconds
Total 386 records

    Green composites in bone tissue engineering

    , Article Emergent Materials ; Volume 5, Issue 3 , 2022 , Pages 603-620 ; 25225731 (ISSN) Jouyandeh, M ; Vahabi, H ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Saeb, M. R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    Natural and biodegradable polymers are of particular interest as green sources with low-cost and environmentally friendly features, and have been widely used for polymer composite development. The term “Green Composites” refers to polymer/filler systems in which polymer, filler, or sometimes both components are green in view of sources from which they are yielded or their biodegradability. Natural fibers obtained from plants, animals, and/or geological processes are a big class of green sources widely applied in green composite development. There has also been continued research on recycling of green composite as well as developing hybrid systems for advanced applications. In view of their... 

    Efficacy of a novel bioactive glass-polymer composite for enamel remineralization following erosive challenge

    , Article International Journal of Dentistry ; Volume 2022 , 2022 ; 16878728 (ISSN) Fallahzadeh, F ; Heidari, S ; Najafi, F ; Hajihasani, M ; Noshiri, N ; Nazari, N. F ; Sharif University of Technology
    Hindawi Limited  2022
    Abstract
    Introduction. Dental caries is the most common cause of tooth loss. However, it can be stopped by enhancing remineralization. Fluoride and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) are among the most important remineralizing agents. Recent studies have used bioactive glass as a remineralizing agent in different forms. This study aimed to assess the efficacy of a composite paste (prepared by mixing urethane polypropylene glycol oligomer with bioactive glass powder for easier application). Materials and Methods. Enamel disks were cut out of the buccal surface of extracted sound third molars. The samples were randomly divided into 3 groups of 15 and underwent Vickers... 

    Engineered conducting polymer-based scaffolds for cell release and capture

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2022 ; 00914037 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Conducting polymer-based devices and scaffolds has become remarkably popular due to their properties such as conductivity, tunable electrochemical properties, and straightforward fabrication procedures. Hence, they have versatile applications and can be used as implants, biosensors, cell capture/release devices, and regenerative medicine scaffolds. This review addresses the effect of conductive polymers on cell behavior since their conductive features can be applied to simulate a cellular response. Moreover, the impact of polymer chemical and physical properties on cellular response has been discussed. Recent biomedical engineering approaches used for cell capture and release were reviewed... 

    Cell-Seeded biomaterial scaffolds: the urgent need for unanswered accelerated angiogenesis

    , Article International Journal of Nanomedicine ; Volume 17 , 2022 , Pages 1035-1068 ; 11769114 (ISSN) Shokrani, H ; Shokrani, A ; Sajadi, S. M ; Seidi, F ; Mashhadzadeh, A. H ; Rabiee, N ; Saeb, M. R ; Aminabhavi, T ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2022
    Abstract
    One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular... 

    How does a microfluidic platform tune the morphological properties of polybenzimidazole nanoparticles?

    , Article Journal of Physical Chemistry B ; Volume 126, Issue 1 , 2022 , Pages 308-326 ; 15206106 (ISSN) Mehdizadeh Chellehbari, Y ; Sayyad Amin, J ; Zendehboudi, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Microfluidic synthesis methods are among the most promising approaches for controlling the size and morphology of polymeric nanoparticles (NPs). In this work, for the first time, atomistic mechanisms involved in morphological changes of polybenzimidazole (PBI) NPs in microfluidic media are investigated. The multiscale molecular dynamic (MD) simulations are validated with the literature modeling and experimental data. A good agreement is obtained between the molecular modeling results and experimental data. The effects of mixing time, solvent type, dopant, and simulation box size at the molecular level are investigated. Mixing time has a positive impact on the morphology of the PBI NPs.... 

    Synthesis and properties of multi-stimuli-responsive water-soluble hyperbranched polymers prepared via reversible addition-fragmentation chain transfer self-condensing vinyl polymerization

    , Article ACS Applied Polymer Materials ; Volume 4, Issue 1 , 2022 , Pages 692-702 ; 26376105 (ISSN) Rahemipoor, S ; Kohestanian, M ; Pourjavadi, A ; Vazifehkhorani, H. H ; Mehrali, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Multistimuli-responsive hyperbranched polymers were synthesized in one-step polymerization using reversible addition-fragmentation chain transfer self-condensing vinyl polymerization (RAFT-SCVP). These hyperbranched polymers responded to UV-vis or sunlight, pH changes, and temperature changes. 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid known as DDMAT participated in esterification with 2-hydroxyethyl methacrylate to obtain a chain transfer monomer in the name of 2-((2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoyl)oxy)ethylmethacrylate (MACDT). For the first time, smart hyperbranched polymers were produced with the RAFT-SCVP method in one step by using...