Loading...
Search for: porosity
0.013 seconds
Total 312 records

    Modeling the Effect of Pressure on the Shrinkages Distribution

    , M.Sc. Thesis Sharif University of Technology Ahmadian, Kasra (Author) ; Davami, Parviz (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    Due to the shrinkage defects, casting parts is sometimes unusable; as a result, researchers is tackling porosity removal problem, so that they would be able to cast parts in a way that have the least porosity. Nowadays, simulation is used to predict the location of the porosity. The design and the elimination of defects, which leads to additional costs, can reduce the overall costs in the projects.
    In this thesis, we focus on shrinkage defects. The main cause of porosity is the drop of pressure. As a matter of fact, the thermal agitation of the molecules is weaker than the strong intermolecular forces that would pull the molecules; therefore, the molten metals’ density will be increased... 

    Electrochemical and Photocatalytic Behaviour of V&S Doped Titania Produced with Plasma Electrolytic Oxidation

    , M.Sc. Thesis Sharif University of Technology Ahmadzadeh, Mohammad (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Plasma Electrolytic Oxidation is a new and promising method for synthesis of oxide layers and coatings on light metals such as titanium and aluminum. This method is a fast, easy and economicalway to produce TiO2 layers on Ti substrate. Photocatalytic properties of TiO2 can be improved with doping of other elements such as metals and non-metals by expanding its band gap which is in UV area of light spectrum in to visible area.Photocatalytic properties of TiO2 is also dependent on surface area and grain size, oxide layers which has been produced with PEO process has a high surface area due to its porosity. Voltage, electrolyte and additives concentration are among parameters which can affect... 

    Gas-liquid membrane contactors: effects of polymer concentration and solvent type on pore size distribution

    , Article Journal of Membrane Science ; Volume 563 , 2018 , Pages 813-819 ; 03767388 (ISSN) Zolfaghari, A ; Mousavi, S. A ; Bozorgmehri Bozarjomehri, R ; Bakhtiari, F ; Sharif University of Technology
    Abstract
    This study investigates the effects of polymer concentration and solvent type on the pore size distribution (PSD) of the fabricated gas-liquid membrane contactors (MCs). Eighteen flat-sheet MCs are fabricated using polysulfone (PSf) and polyethersulfone (PES) polymers, with polymer concentration of 10%, 15%, and 20%. Dimethylformamide (DMF) and n-methyl-2-pyrrolidone (NMP) solvents are used to prepare the polymeric solutions. The role of polyvinylpyrrolidone (PVP) on the mean pore size of MCs is also studied. Scanning electron microscope (SEM) analysis is applied to visualize the pore system of the fabricated MCs. Image processing technique is used to obtain the PSD of the fabricated MCs... 

    Stress dependency of permeability, porosity and flow channels in anhydrite and carbonate rocks

    , Article Journal of Natural Gas Science and Engineering ; Volume 70 , 2019 ; 18755100 (ISSN) Zivar, D ; Foroozesh, J ; Pourafshary, P ; Salmanpour, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This study investigates the effect of stress magnitude and stress history on porosity and permeability values of anhydride and carbonate rocks. Porosity and permeability properties are measured for twelve anhydride and carbonate core samples under stress loading and unloading conditions. The results of permeability measurements show that tighter core samples are more stress dependent while the anhydride samples are generally more sensitive to the stress. The gap between stress loading and unloading (hysteresis) is more considerable at lower effective stress values. The results also indicate that the hysteresis is more noticeable in the anhydride core samples. The gas slippage factor is also... 

    On-fiber standardization technique for solid-coated solid-phase microextraction

    , Article Analytical Chemistry ; Volume 79, Issue 3 , 2007 , Pages 1221-1230 ; 00032700 (ISSN) Zhou, S. N ; Zhang, X ; Ouyang, G ; Es-haghi, A ; Pawliszyn, J ; Sharif University of Technology
    2007
    Abstract
    The on-fiber standardization technique for solid-coated solid-phase microextraction (SPME) was studied, and a theoretical model is proposed for the isotropic behavior of adsorption and desorption, based on Fick's law of diffusion and the Langmuir model. The isotropy of the adsorption and desorption of analytes onto and from the surface of porous solid SPME fiber was validated with the use of a commercially available fiber, a 50-μm Carbowax/ templated resin for carbamate pesticide analysis in various sample matrixes, and a self-made polypyrrole fiber for diazepam analysis in blood samples. Time constants were comparable for the adsorption and desorption processes. Equilibrium constants and... 

    Advanced gel polymer electrolyte for lithium-ion polymer batteries

    , Article ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology ; July , 2013 ; 9780791855515 (ISBN) Zhang, R ; Hashemi, N ; Ashuri, M ; Montazami, R ; Advanced Energy Systems Division, Solar Energy Division ; Sharif University of Technology
    2013
    Abstract
    We report improved performance of Li-ion polymer batteries through advanced gel polymer electrolytes (GPEs). Compared to solid and liquid electrolytes, GPEs are advantageous as they can be fabricated in different shapes and geometries; also ionic properties are significantly superior to that of solid and liquid electrolytes. We have synthetized GPE in form of membranes by trapping ethylene carbonate and propylene carbonate in a composite of polyvinylidene fluoride and N-methylpyrrolidinore. By applying phase-transfer method, we synthetized membranes with micro-pores, which led to higher ionic conductivity. The proposed membrane is to be modified further to have higher capacity, stronger... 

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    Abstract
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Comparison of different univariate and multivariate geostatistical methods by porosity modeling of an iranian oil field

    , Article Petroleum Science and Technology ; Volume 29, Issue 19 , 2011 , Pages 2061-2076 ; 10916466 (ISSN) Zarei, A ; Masihi, M ; Salahshoor, K ; Sharif University of Technology
    2011
    Abstract
    Geostatistical methods are grouped in two main divisions: univariate and multivariate. When there is adequate amount of primary data, univariate methods such as kriging and SGS give a good representation of property distribution in the reservoir, but practical difficulties appear when there is no sufficient data. In such a case it is necessary to choose multivariate geostatistical methods in which some covariables are contributed to model the primary variable. Multivariate geostatistics is a broad term that encompasses all geostatistical methods that utilize more than one variable to predict some physical property of the earth. Bivariate geostatistics is obviously the simplest subset of the... 

    The role of microstructure in mechanical behaviors of low-alloy sintered steels

    , Article Scientia Iranica ; Volume 7, Issue 1 , 2000 , Pages 41-49 ; 10263098 (ISSN) Yoozbashizadeh, H ; Simchi, A ; Moradkhani, D ; Ashtari, M ; Khorsand, H ; Davami, P ; Sharif University of Technology
    Sharif University of Technology  2000
    Abstract
    In this study, microstructural aspects that control fracture and deformation resistance of P/M materials are evaluated. Several low-alloy steels were produced under both experimental and commercial conditions for achieving different matrix phases and porosity levels with varying shape factors. A 'porosity map' was constructed and used for a quantified study of the dominant mechanism controlling mechanical behaviors. The role of inclusion gathering and secondary pores, as well as sintering mechanism and alloying method is considered and discussed. The mechanism assessment was performed by using microstructure examination through optical and scanning electron microscopy. The results... 

    The estimation of formation permeability in a carbonate reservoir using an artificial neural network

    , Article Petroleum Science and Technology ; Vol. 30, issue. 10 , Apr , 2010 , p. 1021-1030 ; ISSN: 10916466 Yeganeh, M ; Masihi, M ; Fatholah,i S ; Sharif University of Technology
    Abstract
    Reservoir permeability is an important parameter that its reliable prediction is necessary for reservoir performance assessment and management. Although many empirical formulas are derived regarding permeability and porosity in sandstone reservoirs, these correlations cannot be accurately depicted in carbonate reservoir for the wells that are not cored and for which there are no welltest data. Therefore, having a framework for estimation of these parameters in reservoirs with neither coring samples nor welltest data is crucial. Rock properties are characterized by using different well logs. However, there is no specific petrophysical log for estimating rock permeability; thus, new methods... 

    The estimation of formation permeability in a carbonate reservoir using an artificial neural network

    , Article Petroleum Science and Technology ; Volume 30, Issue 10 , 2012 , Pages 1021-1030 ; 10916466 (ISSN) Yeganeh, M ; Masihi, M ; Fatholahi, S ; Sharif University of Technology
    2012
    Abstract
    Reservoir permeability is an important parameter that its reliable prediction is necessary for reservoir performance assessment and management. Although many empirical formulas are derived regarding permeability and porosity in sandstone reservoirs, these correlations cannot be accurately depicted in carbonate reservoir for the wells that are not cored and for which there are no welltest data. Therefore, having a framework for estimation of these parameters in reservoirs with neither coring samples nor welltest data is crucial. Rock properties are characterized by using different well logs. However, there is no specific petrophysical log for estimating rock permeability; thus, new methods... 

    Application of artificial neural network for estimation of formation permeability in an iranian reservoir

    , Article 1st International Petroleum Conference and Exhibition, Shiraz, 4 May 2009 through 6 May 2009 ; 2009 Yeganeh, M ; Masihi, M ; Fatholahi, S ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2009
    Abstract
    The permeability is one of the most important reservoir parameters and its accurate prediction is necessary for reservoir management and enhancement. Although many empirical formulas are derived regarding permeability and porosity in sandstone reservoirs [1], these correlations cannot be modified accurately in carbonate reservoir for the wells which are not cored and there is no welltest data. Therefore estimation of these parameters is a challenge in reservoirs with no coring sample and welltest data. One of the most powerful tools to estimate permeability from well logs is Artificial Neural Network (ANN) whose advantages and disadvantages have been discussed by several authors [2]. In this... 

    Modeling of Non-Darcy flow through anisotropic porous media: Role of pore space profiles

    , Article Chemical Engineering Science ; Volume 151 , 2016 , Pages 93-104 ; 00092509 (ISSN) Veyskarami, M ; Hassani, A. H ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Excess pressure drop induced by inertial effects limits the applicability of Darcy's law for modeling of fluid flow through porous media at high velocities. It is expected such additional pressure drop is influenced by pore/morphology of porous media. This work concerns with fundamental understanding of how throat curvature affects intrinsic properties of porous media at non-Darcy flow conditions using network modeling. Conical, parabolic, hyperbolic, and sinusoidal capillary ducts with three types of imposed anisotropy are used to construct the network in a more realistic manner. Solutions of one dimensional Navier-Stokes equation for incompressible fluid flow through converging/diverging... 

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly... 

    Modeling the dual-fuel combustion of porous lycopodium particles and diesel using an analytical simulation framework

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 163 , 2022 ; 01652370 (ISSN) Tashakori, S ; Akbari, S ; Faghiri, S ; Sadeghi, S ; Xu, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, a comprehensive analytical study is performed to assess the lycopodium-diesel dual-fuel combustion system in counter-flow premixed configuration. The system is modeled as multiple zones that are coupled together via proper boundary and jump conditions on interfaces. According to the respective reaction and transport phenomena in these zones, conservation equations of mass and energy are derived, non-dimensionalized, and solved by Matlab and Mathematica in an analytical way. The porosity of lycopodium particles and the thermal radiation from the reaction zone and the post-flame zones into the preheating zone are considered, in order to improve the realism and accuracy of the... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) Tajbakhsh, S ; Hajiali, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites... 

    A newmodel for permeability reduction rate due to calciumsulfate precipitation in sandstone cores

    , Article Journal of Porous Media ; Volume 13, Issue 10 , 2010 , Pages 911-922 ; 1091028X (ISSN) Tahmasebi, H. A ; Soltanieh, M ; Kharrat, R ; Sharif University of Technology
    2010
    Abstract
    In this work, a reliable dimensionless correlation is proposed for prediction of permeability reduction rate in porous media, which is verified by experimental data obtained in this work in glass bead and sand pack as well as the core data from the literature. Although this correlation is based on the data which were obtained in our work in glass bead and sand-packed media at low pressure, it shows considerable flexibility to match with the extracted data for sandstone cores at high pressure, various flow rates, different temperatures and concentrations of calcium, and sulfate ions in brine solutions. In addition, a novel relationship for predicting the rate of precipitation of CaSO4 in... 

    A study of feasibility for water purification using vertical porous concrete filter

    , Article International Journal of Environmental Science and Technology ; Volume 4, Issue 4 , 2007 , Pages 505-512 ; 17351472 (ISSN) Taghizadeh, M. M ; Torabian, A ; Borghei, M ; Hassani, A. H ; Sharif University of Technology
    CEERS  2007
    Abstract
    There is a need to find cheaper and simpler techniques for rural water filtration system in developing countries. Using a filter made of blocks for the water treatment enables one to make vertical filters. It is expected that the amount of land utilized would decrease by more than 70 % if vertical filters were used. The operation and washing would be simpler than using horizontal sand filters as filters made of blocks would be used instead. The feasibility study focused on finding adequate materials, compositions and methods of making a block with enough resistance to water pressure, sufficient porosity for water transformation, and using inexpensive, readily available materials. A pilot... 

    An innovative high performance pervious concrete with polyester and epoxy resins

    , Article Construction and Building Materials ; Volume 228 , 2019 ; 09500618 (ISSN) Tabatabaeian, M ; Khaloo, A ; Khaloo, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Pervious concrete (PC) has been detecting application in pavement and concrete structures such as dams, small retaining walls, and etc during the past decades. Also, in recent years, the types of resins have been introduced to apply in concrete owing to the enhancing in mechanical and durability characteristics. However, few studies have investigated the mechanical behavior of high performance pervious concrete (HPPC) incorporated by polyester and epoxy resins as polymeric composites, where ordinary cement material has been completely deleted. The purpose of this investigation is to compare the mechanical properties, permeability, and durability of HPPCs made by polymeric composites (i.e....