Loading...
Search for: recovery
0.016 seconds
Total 927 records

    Nanomaterial-assisted pyrolysis of used lubricating oil and fuel recovery

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Alavi, E ; Abdoli, M. A ; Khorasheh, F ; Nezhadbahadori, F ; Bayandori Moghaddam, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Used lubricating oil (ULO) is a heavy mixture of various hydrocarbons and needs to be treated before discharging. Considering ULO nature, it is more favorable to recover lighter hydrocarbon cuts from ULO, which not only improves the whole process economically, but also prevents the emission of hardly decomposable hydrocarbons into the environment. In this research, the potential of pyrolysis method for ULO recovery was studied. Furthermore, graphene nanoplatelets (GNP), γ- Fe2O3 and ZnO nanoparticles were used to improve the kinetics of the process and their impacts on the final product quality were evaluated. Based on the results, adding nanomaterials increased the tendency to produce gas... 

    A review on pulsating heat pipes: from solar to cryogenic applications

    , Article Applied Energy ; Volume 222 , 15 July , 2018 , Pages 475-484 ; 03062619 (ISSN) Alhuyi Nazari, M ; Ahmadi, M. H ; Ghasempour, R ; Behshad Shafii, M ; Mahian, O ; Kalogirou, S ; Wongwises, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Pulsating heat pipes (PHPs) are compact cooling equipment used for various applications. This type of heat pipes can be used in renewable energy systems, cooling electronic devices, heat recovery systems and many other applications. Since PHPs have superior thermal performance, by applying them in energy systems enhance their efficiency. In addition, PHPs are a reliable medium for cooling various devices which have high heat flux. In this study, various works conducted on the applications of PHPs are reviewed and analyzed. It is concluded that PHPs are efficient and reliable devices for utilization in various energy systems. Moreover, at very low temperatures, such as cryogenic applications,... 

    A validated numerical-experimental design methodology for a movable supersonic ejector compressor for waste-heat recovery

    , Article Journal of Thermal Science and Engineering Applications ; Volume 6, Issue 2 , Oct , 2014 ; 19485085 (ISSN) Alimohammadi, S ; Persoons, T ; Murray, D. B ; Tehrani, M. S ; Farhanieh, B ; Koehler, J ; Sharif University of Technology
    Web Portal ASME (American Society of Mechanical Engineers)  2014
    Abstract
    The aim of this paper is to develop the technical knowledge, especially the optimum geometries, for the design and manufacturing of a supersonic gas-gas ejector for a wasteheat driven vehicle cooling system. Although several studies have been performed to investigate the effects of geometrical configurations of gas-gas ejectors, a progressive design methodology of an ejector compressor for application to a vehicle cooling system has not yet been described. First, an analytical model for calculation of the ejector optimum geometry for a wide range of operating conditions is developed, using R134a as the working fluid with a rated cooling capacity of 2.5 kW. The maximum values of entrainment... 

    Experimental investigation of water alternating CH4-CO 2 mixture gas injection in light oil reservoirs

    , Article International Journal of Oil, Gas and Coal Technology ; Vol. 8, issue. 1 , 2014 , p. 31-40 Alizadeh, A ; Ghazanfari, M. H ; Taghikhani, V ; Badakhshan, A ; Sharif University of Technology
    Abstract
    This paper studies a WAG process for improving the recovery efficiency in light oil reservoirs. Until now, few references have reported the role of CO2 mole percent on recovery improvement in light oil reservoirs. The injected gas was changed, and the effect of composition changes on performance of core flood experiments were conducted at fixed flow rate. Five series of experiments (varied in methane mole percentages, 0, 25, 50, and 75, 100) were systematically examined. The results indicated that the oil recovery efficiency improved with the increasing of CO2 mole ratio and there was also maximum recovery efficiency in this work. That would be helpful to better understanding the role of CO2... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: Pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; 2020 Alizadeh, M. R ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    A mechanistic study of emulsion flooding for mobility control in the presence of fatty acids: Effect of chain length

    , Article Fuel ; Volume 276 , 2020 Alizadeh, S ; Suleymani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Emulsion flooding is a promising method for enhanced oil recovery (EOR). The static and dynamic behavior of the emulsions is greatly influenced by the nature of the applied surfactant. In this work, the effect of fatty acids, as natural surface-active agents, and their chain length on the emulsion behavior was investigated in both bulk and porous media. A panel of the fatty acids with different chain lengths (6 < C < 18) was applied at constant concentration and pH. Upon the static stability tests, emulsion stability at the optimum value of chain length (C14) was increased by two orders of magnitude. Under the optimal condition, the hydrogen bonding between dissociated and undissociated... 

    Video-tampering detection and content reconstruction via self-embedding

    , Article IEEE Transactions on Instrumentation and Measurement ; 2017 ; 00189456 (ISSN) Amanipour, V ; Ghaemmaghami, S ; Sharif University of Technology
    Abstract
    Rapidly improving video-editing software tools and algorithms have made video content manipulation and modification feasible even by inexpert users. Detecting video tampering and recovering the original content of the tampered videos is, thus, a major need in many applications. Although detection and localization of the tampering in certain types of video editing have successfully been addressed in the literature, attempts for recovering the tampered videos are bound to methods using watermarks. In this paper, a scheme for the reconstruction of the tampered video through watermarking is proposed. The watermark payload, which consists of highly compressed versions of keyframes of the video... 

    Video-tampering detection and content reconstruction via self-embedding

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 67, Issue 3 , March , 2018 , Pages 505-515 ; 00189456 (ISSN) Amanipour, V ; Ghaemmaghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Rapidly improving video-editing software tools and algorithms have made video content manipulation and modification feasible even by inexpert users. Detecting video tampering and recovering the original content of the tampered videos is, thus, a major need in many applications. Although detection and localization of the tampering in certain types of video editing have successfully been addressed in the literature, attempts for recovering the tampered videos are bound to methods using watermarks. In this paper, a scheme for the reconstruction of the tampered video through watermarking is proposed. The watermark payload, which consists of highly compressed versions of keyframes of the video... 

    Modeling interfacial tension of normal alkane-supercritical CO2 systems: Application to gas injection processes

    , Article Fuel ; Volume 253 , 2019 , Pages 1436-1445 ; 00162361 (ISSN) Ameli, F ; Hemmati Sarapardeh, A ; Tatar, A ; Zanganeh, A ; Ayatollahi, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    To study the gas injection scenario for successful implementation of enhanced oil recovery (EOR)processes, the prediction of interfacial tension (IFT)between injected gas and the crude oil is of paramount significance. In the present study, some intelligent methods were developed for determining IFT values between supercritical CO2 and normal alkanes. IFT was considered as a function of temperature, pressure, and molecular weight of normal alkanes. The developed methods were Multilayer perceptron (MLP), Genetic Algorithm Radial Basis Function (GA-RBF), and Conjugate Hybrid-PSO ANFIS (CHPSO-ANFIS). The average absolute percent relative errors (AAREs)for the stated techniques were found to be... 

    Meta-analysis of bioenergy recovery and anaerobic digestion in integrated systems of anaerobic digestion and microbial electrolysis cell

    , Article Biochemical Engineering Journal ; Volume 178 , 2022 ; 1369703X (ISSN) Amin, M. M ; Arvin, A ; Feizi, A ; Dehdashti, B ; Torkian, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In current study, a meta-analysis approach was used to identify and evaluate the impact of various factors on the performance of integrated systems of anaerobic digestion with microbial electrolysis cell. In this study, related articles on the topic were systematically identified and collected according to the considered criteria, and the effect size that refers to the value of the difference between variables mean (total chemical oxygen demand (TCOD) removal rate and CH4 yield) was estimated. According to the meta-analysis, fed-batch operation mode, the range of 20< temperature ≤30 °C, metal cathodes, the range of 500< anode surface area ≤5000 cm2, HRT (hydraulic retention time) >20 days,... 

    Semisolid structure for M2 high speed steel prepared by cooling slope

    , Article Journal of Materials Processing Technology ; Volume 210, Issue 12 , September , 2010 , Pages 1632-1635 ; 09240136 (ISSN) Amin Ahmadi, B ; Aashuri, H ; Sharif University of Technology
    2010
    Abstract
    Effects of cooling slope angle and the temperature of molten metal on the globular structure of M2 high speed steel after holding at the semisolid state have been investigated. The globular structure was achieved by pouring the molten metal at 1595 °C on the ceramic cooling slope with the length of 200 mm and the angle of 25°. The globular structure of M2 high speed steel in the form of rolled-annealed and as cast condition after holding at semisolid state has been achieved. The size of globular grains of cooling slope sample was smaller than that of the rolled-annealed and as cast samples. Solid particles of rolled-annealed sample after holding at semisolid state had better roundness... 

    Lowering mutual coherence between receptive fields in convolutional neural networks

    , Article Electronics Letters ; Volume 55, Issue 6 , 2019 , Pages 325-327 ; 00135194 (ISSN) Amini, S ; Ghaemmaghami, S ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    It has been shown that more accurate signal recovery can be achieved with low-coherence dictionaries in sparse signal processing. In this Letter, the authors extend the low-coherence attribute to receptive fields in convolutional neural networks. A new constrained formulation to train low-coherence convolutional neural network is presented and an efficient algorithm is proposed to train the network. The resulting formulation produces a direct link between the receptive fields of a layer through training procedure that can be used to extract more informative representations from the subsequent layers. Simulation results over three benchmark datasets confirm superiority of the proposed... 

    Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions

    , Article Biochemical Engineering Journal ; Volume 67 , 2012 , Pages 208-217 ; 1369703X (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Barati, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The kinetics of bioleaching of Mo, Ni, and Al from spent hydrocracking catalyst, using Aspergillus niger was studied. The four most effective bioleaching variables were selected in accordance with the Plackett-Burman design and were further optimized via central composite design (CCD). The optimal values of the variables for maximum multi-metal bioleaching were as follows: particle size 150-212. μm, sucrose 93.8. g/L, pulp density 3%. w/v, and pH 7. The maximum metal recoveries corresponding to these conditions were 99.5 ± 0.4% Mo, 45.8 ± 1.2% Ni, and 13.9 ± 0.1% Al. The relatively low Ni extraction was attributed to the precipitation of Ni in the presence of oxalic acid. Under the optimal... 

    Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger

    , Article Hydrometallurgy ; Volume 109, Issue 1-2 , 2011 , Pages 65-71 ; 0304386X (ISSN) Amiri, F ; Yaghmaei, S ; Mousavi, S. M ; Sheibani, S ; Sharif University of Technology
    2011
    Abstract
    This study was designed to compare one-step, two-step and spent medium bioleaching of spent catalyst by adapted Aspergillus niger in batch cultures. Aspergillus niger, which was adapted to heavy metal ions, Ni, Mo, Fe, and W, was grown in medium containing up to 5% (w/v) of spent catalyst. The main lixiviant in bioleaching was gluconic acid, which was produced at all pulp densities in the one-step bioleaching process. Gluconic acid was also produced in the two-step bioleaching process when the spent catalyst was present at pulp densities greater than 1% (w/v). In the spent medium leaching, however, the primary agent was citric acid. The pulp density of the spent catalyst was varied, and this...