Loading...
Search for: spark-plasma-sintering
0.006 seconds
Total 28 records

    Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior

    , Article Ceramics International ; Volume 42, Issue 2 , 2016 , Pages 2770-2779 ; 02728842 (ISSN) Pak Seresht, A. H ; Javadi, A. H ; Bahrami, M ; Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In the present work, spark plasma sintering (SPS) process was employed to prepare a nanostructured yttria-stabilized zirconia (8YSZ) coating on a nickel-based superalloy (INCONEL 738) with functionally graded structure. A stack layer of INCONEL 738/NiCrAlY powder/Al foil/NiCrAlY+YSZ powder/YSZ powder was SPSed in a graphite die at an applied pressure of 40 MPa under an vacuum atmosphere (8 Pa). The sintering temperature was ∼1040 °C. For comparison purpose, the air plasma spray (APS) technique was employed to prepare the thermal barrier coating (TBC). Microstructural studies by scanning electron microscopy showed that the SPSed coating was sound and free of interfacial cracks and large... 

    Iron-borosilicate soft magnetic composites: the correlation between processing parameters and magnetic properties for high frequency applications

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 241-250 ; 03048853 (ISSN) Gheiratmand, T ; Madaah Hosseini, H .R ; Seyed Reihani, S. M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the... 

    Fabrication of FINEMET bulk alloy from amorphous powders by spark plasma sintering

    , Article Powder Technology ; Volume 289 , 2016 , Pages 163-168 ; 00325910 (ISSN) Gheiratmand, T ; Madaah Hosseini, H. R ; Davami, P ; Sarafidis, C ; Sharif University of Technology
    Elsevier 
    Abstract
    Finemet bulk soft magnetic alloy was fabricated by spark plasma sintering of the milled ribbons. The amorphous melt-spun ribbons were milled for 36min by high energy vibrational mill and then sieved to separate particles smaller than 125μm. The size distribution of particles was determined by a laser diffraction particle size analyzer. Spark plasma sintering was carried out at super-cooled liquid region for short times of 7 and 21min. The structure of bulk samples was characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and transmission electron microscopy techniques. The magnetization and coercivity of samples were measured using SQUID... 

    Spark plasma sintering of ultrafine YSZ reinforced Cu matrix functionally graded composite

    , Article Acta Metallurgica Sinica (English Letters) ; Volume 29, Issue 12 , 2016 , Pages 1169-1176 ; 10067191 (ISSN) Mirazimi, J ; Abachi, P ; Purazrang, K ; Sharif University of Technology
    Chinese Society for Metals  2016
    Abstract
    Copper matrix composites have received more attentions as possible candidate for thermal and electrical conductive materials to be used in electrical contact applications. In this study, five-layered Cu/YSZ (yttria-stabilized zirconia) functionally graded material (FGM) and copper matrix composite specimens containing 3 and 5 vol% YSZ particles plus pure Cu specimen were synthesized using powder metallurgy (PM) route and spark plasma sintering (SPS) consolidation process. The microstructural and some physical, mechanical features of all specimens were characterized. Microscopic examinations showed that ultrafine YSZ particles were distributed in the copper matrix almost homogeneously. An... 

    Influence of pulsed direct current on the growth rate of intermetallic phases in the Ni–Al system during reactive spark plasma sintering

    , Article Scripta Materialia ; Volume 216 , 2022 ; 13596462 (ISSN) Abedi, M ; Asadi, A ; Sovizi, S ; Moskovskikh, D ; Vorotilo, S ; Mukasyan, A ; Sharif University of Technology
    Acta Materialia Inc  2022
    Abstract
    The effect of pulsed direct current (PDC) on solid-state diffusion in the Ni–Al binary system was investigated. Two experimental schemes were employed: in the presence and absence of an electric field. The diffusion couples were heat-treated for 1.5, 3, and 5 h at 803, 833, and 863 K. Under the investigated conditions, only two intermetallic phases (NiAl3 and Ni2Al3) formed at the boundary of the metals. It was shown that the PDC passing through the diffusion couple significantly enhanced the growth rates of both phases. The apparent reaction–diffusion coefficients were DNiAl3=4.0×10−9exp(−[Formula presented]) and DNi2Al3=9.7×10−9exp(−[Formula presented]) in the field-assisted scheme,... 

    Spark plasma sintering of TaC-HfC UHTC via disilicides sintering aids

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 8 , 2013 , Pages 1479-1484 ; 09552219 (ISSN) Ghaffari, S. A ; Faghihi-Sani, M. A ; Golestani Fard, F ; Mandal, H ; Sharif University of Technology
    2013
    Abstract
    Ta0.8Hf0.2C ceramic has the highest melting point among the known materials (4000°C). Spark plasma sintering is a new route for consolidation of materials, specially ultra high temperature ceramics (UHTCs), which are difficult to be sintered at temperatures lower than 2000°C.The purpose of this study is to consolidate Ta0.8Hf0.2C by spark plasma sintering at low temperature using MoSi2 and TaSi2 as sintering aid. In this regard, effect of different amounts of sintering aids and carbides ratio on densification behavior and mechanical properties of Ta1-xHfxC were investigated.Fully consolidation of Ta0.8Hf0.2C was achieved in presence of 12vol.% sintering aid after sintering at 1650°C for 5min... 

    Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites

    , Article Progress in Materials Science ; Volume 90 , 2017 , Pages 276-324 ; 00796425 (ISSN) Azarniya, A ; Azarniya, A ; Sovizi, S ; Madaah Hosseini, H. R ; Varol, T ; Kawasaki, A ; Ramakrishna, S ; Sharif University of Technology
    Abstract
    The technological and industrial needs for development of fully dense nanocomposites have led to significant advances in spark plasma sintering (SPS) technique and its enhanced forms. This technique has opened up a new prospect over carbon nanotube (CNT)-metal matrix nanocomposites (MMNCs) with superior physical or mechanical characteristics. To date, a large number of authentic papers have been published over this ongoing field, but have not been comprehensively reviewed. The pertinent research works cover some significant aspects of CNT-MMNCs requiring a concise review on (i) the potential phase transformations of pure CNTs and microstructure evolution; (ii) the novel approaches for... 

    Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites

    , Article Nanoscale ; Volume 9, Issue 35 , 2017 , Pages 12779-12820 ; 20403364 (ISSN) Azarniya, A ; Sovizi, S ; Azarniya, A ; Rahmani Taji Boyuk, M. R ; Varol, T ; Nithyadharseni, P ; Madaah Hosseini, H. R ; Ramakrishna, S ; Reddy, M. V ; Sharif University of Technology
    Abstract
    Recently, a wide variety of research works have focused on carbon nanotube (CNT)-ceramic matrix nanocomposites. In many cases, these novel materials are produced through conventional powder metallurgy methods including hot pressing, conventional sintering, and hot isostatic pressing. However, spark plasma sintering (SPS) as a novel and efficient consolidation technique is exploited for the full densification of high-temperature ceramic systems. In these binary nanocomposites, CNTs are added to ceramic matrices to noticeably modify their inferior properties and SPS is employed to produce fully dense compacts. In this review, a broad overview of these systems is provided and the potential...