Loading...
Search for: steel-corrosion
0.004 seconds
Total 55 records

    Corrosion inhibition of mild steel with tolyltriazole

    , Article Materials Research ; Volume 24, Issue 4 , 2021 ; 15161439 (ISSN) Fathabadi, H. E ; Ghorbani, M ; Mokarami Ghartavol, H ; Sharif University of Technology
    Universidade Federal de Sao Carlos  2021
    Abstract
    Tolyltriazole (TTA) is a well-defined corrosion inhibitor for copper and copper alloys. However, there is little literature about its corrosion inhibition performance for mild steels in corrosive environments. This paper studied the electrochemical behavior of TTA in 0.5 M HCl solutions. Also, the morphology and nature of TTA layers on the steel surface were investigated. Electrochemical results showed that TTA is an excellent corrosion inhibitor for mild steel in acidic media with an efficiency of 91% for 0.07 M concentration. The results also indicated that TTA is a mixed-type inhibitor. XRD analysis revealed that the inhibition mechanism of TTA is based on the formation of an organic film... 

    Fatigue limit prediction and analysis of nano-structured AISI 304 steel by severe shot peening via ANN

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 2663-2678 ; 01770667 (ISSN) Maleki, E ; Unal, O ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    AISI 304 stainless steel is very widely used for industrial applications due to its good integrated performance and corrosion resistance. However, shot peening (SP) is known as one of the effectual surface treatments processes to provide superior properties in metallic materials. In the present study, a comprehensive study on SP of AISI 304 steel including 42 different SP treatments with a wide range of Almen intensities of 14–36 A and various coverage of 100–2000% was carried out. Varieties of experiments were accomplished for the investigation of the microstructure, grain size, surface topography, hardness and residual stresses as well as axial fatigue behavior. After experimental... 

    Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution

    , Article Journal of Cleaner Production ; Volume 210 , 2019 , Pages 660-672 ; 09596526 (ISSN) Alibakhshi, E ; Ramezanzadeh, M ; Haddadi, S. A ; Bahlakeh, G ; Ramezanzadeh, B ; Mahdavian, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The Persian Liquorice was introduced as a sustainable corrosion inhibitor with excellent inhibition action for mild steel in sodium chloride solution. Persian Liquorice is a root of Glycyrrhiza glabra including many active compounds like Glycyrrhizin (GL), 18β- Glycyrrhetinic acid (GA), Liquritigenin (LTG), Licochalcone A (LCA), Licochalcone E (LCE), and Glabridin (GLD). The Fourier transform infrared (FT-IR) spectroscopy was utilized to track various active components exist in the Persian Liquorice extract. Electrochemical impedance spectroscopy, potentiodynamic polarization and electrochemical current noise measurements were conducted to investigate the corrosion inhibition role of various... 

    Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO 2 -rGO nanocomposite on 316L stainless steel substrate

    , Article Ceramics International ; Volume 45, Issue 11 , 2019 , Pages 13747-13760 ; 02728842 (ISSN) Azadeh, M ; Parvizy, S ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    TiO 2 -rGO nanocomposite coatings were obtained by electrophoretic deposition (EPD) technique of TiO 2 nanoparticles and graphene oxide (GO) on stainless steel substrate. First, GO particles were synthesized using a modified Hummers' method. GO was reduced electrochemically to form a coating in the presence of nano-sized TiO 2 particles. The influences of different parameters such as GO concentration, coupling co-electro-deposition parameters (electrophoretic duration and voltage) on thickness, surface morphology and, corrosion behavior of the as-synthesized TiO 2 -rGO nanocomposite coatings were systematically surveyed. The morphology and microstructure were investigated by field emission... 

    Insight into the corrosion inhibition of Biebersteinia multifida root extract for carbon steel in acidic medium

    , Article Science of the Total Environment ; Volume 836 , 2022 ; 00489697 (ISSN) Khayatkashani, M ; Soltani, N ; Tavakkoli, N ; Nejatian, A ; Ebrahimian, J ; Mahdi, M. A ; Salavati Niasari, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this project, the protective effect of Biebersteinia multifida root extract (BMRE) against corrosion of 1018 low carbon steel (1018LCS) in HCl solutions was appraised by assessing weight loss, electrochemical impedance spectroscopy (EIS), and polarization at 25 °C. The maximum inhibitory efficacy for the concentration of 1 g/l of the BMRE was 92.8% at 25 °C after 2 h and increased to 95.3% after 24 h of immersion. Polarization experiments have shown that the extract in acidic solutions can act as a mixed corrosion inhibitor. The corrosion inhibitory efficacy of BMRE decreased with increasing temperature, and at all temperature settings studied, the adsorption of BMRE molecules on 1018 LCS... 

    Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    , Article Materials and Design ; Volume 43 , January , 2013 , Pages 467-474 ; 02641275 (ISSN) Zareie Rajani, H. R ; Akbari Mousavi, S. A. A ; Madani Sani, F ; Sharif University of Technology
    2013
    Abstract
    One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the... 

    Mechanical and electrochemical properties of ultrasonic-assisted electroless deposition of Ni-B-TiO2 composite coatings

    , Article Journal of Alloys and Compounds ; Volume 633 , 2015 , Pages 127-136 ; 09258388 (ISSN) Niksefat, V ; Ghorbani, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Nickel-Boron-Titania (Ni-B-TiO2) composite coatings were successfully obtained on mild steel (St-37) by simultaneous electroless deposition. TiO2 particles were dispersed in a suspension by ultrasonic irradiation. The surface morphology, particle size, elemental composition and phase analysis of the coatings were characterized by scanning electron microscopy (SEM), inductively coupled plasma (ICP) and X-ray diffraction (XRD). The hardness and friction coefficient of as- plated and heat treated Ni-B and Ni-B-TiO2 composite coatings were determined by Vickers diamond indentation and indentation scratch tests and compared with Ni-B coatings. As a result, the hardness (1263 HV) of the as-plated... 

    Synergistic inhibition effect of zinc acetylacetonate and benzothiazole in epoxy coating on the corrosion of mild steel

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 6 , 2015 , Pages 2464-2472 ; 10599495 (ISSN) Amoozadeh, S. M ; Mahdavian, M ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The corrosion inhibition effect of zinc acetylacetonate (ZAA) and benzothiazole (BTH) mixture was evaluated for mild steel in 3.5% NaCl solution. To this end, ZAA:BTH mixtures ranged from 6:1 to 1:6 mol ratios were examined by weight loss and open circuit potential to obtain optimal mole ratio. The optimal mixture of ZAA:BTH at 1:5 mol ratio showed a significant corrosion inhibition efficiency proved by electrochemical impedance spectroscopy and polarization studies. The addition of the optimal mixture of ZAA:BTH to epoxy coating showed a considerable increase of corrosion protection evaluated by salt spray exposure  

    Resistance spot welding of MS1200 martensitic advanced high strength steel: microstructure-properties relationship

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 867-874 ; 15266125 (ISSN) Pouranvari, M ; Sobhani, S ; Goodarzi, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper addresses the microstructure and tensile-shear mechanical performance of MS1200 Giga-grade martensitic advanced high strength steel resistance spot welds. The key phase transformations in MS1200 welds were lath martensite formation in the fusion zone (FZ) and upper-critical heat affected zone (HAZ), new ferrite formation in the inter-critical HAZ and martensite tempering in the sub-critical HAZ. The MS1200 welds were featured by a near matching hardness in the fusion zone and under-matching hardness in the heat affected zone (HAZ) compared to the base metal. At certain process window a complete nugget pullout and separation was observed with high post-necking tearing energy. The... 

    Formation of Zn-Ca-Ni tri cation's phosphate coating on steel and study that properties

    , Article TMS 2009 - 138th Annual Meeting and Exhibition, San Francisco, CA, 15 February 2009 through 19 February 2009 ; Volume 1 , 2009 , Pages 615-623 ; 9780873397384 (ISBN) Zarei, M ; Afshar, A ; Sharif University of Technology
    2009
    Abstract
    A new Zinc phosphating bath, which produces coatings at relatively lower temperatures within a reasonable time by using of chemical accelerators has been devised. Improvement of the bath performance by the addition of divalent cations like calcium, nickel has been studied. Bath formulation and operating conditions have been optimized by coating weight determinations. Stable samples of phosphating formulations with and without calcium and nickel salts were prepared and the structure and morphology of the phosphate coatings were determined by using X-ray diffraction (XRD) techniques, scanning electron microscopy. ASTMB117 salt spray test and electrochemical impedance spectroscopy (EIS) were... 

    Synthesis and application of mesoporous carbon nanospheres containing walnut extract for fabrication of active protective epoxy coatings

    , Article Progress in Organic Coatings ; Volume 133 , 2019 , Pages 206-219 ; 03009440 (ISSN) Haddadi, S. A ; Behroozi Kohlan, T ; Momeni, S ; Ramazani S. A., A ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this article, the synthesis procedure of mesoporous carbon nanospheres (MCNSs) using silica hard-templates, doping of the nanospheres with walnut extract, and their impact on active protective properties of an epoxy coating are presented. Field emission scanning electron microscope (FE-SEM) results showed that the synthesis of these nanocontainers was successfully done in spherical form. Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) results showed that walnut extract as a green inhibitor was doped into the pores of nanocapsules. Corrosion resistance of the mild steel samples in the 3.5 wt.% NaCl solution in the presence and absence of walnut extract... 

    Mechanical and corrosion protection properties of a smart composite epoxy coating with dual-encapsulated epoxy/polyamine in carbon nanospheres

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 8 , 2019 , Pages 3033-3046 ; 08885885 (ISSN) Haddadi, S. A ; Ramazani, S. A ; Mahdavian, M ; Taheri, P ; Mol, J. M. C ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Carbon nanocapsules doped separately with epoxy and polyamine were used to fabricate an epoxy nanocomposite coating. Carbon nanospheres with dual-encapsulated epoxy/polyamine were dispersed uniformly in the epoxy resin at concentrations of 2, 5, and 10 wt %. The mechanical properties of the nanocomposites were studied by tensile testing and scratch hardness measurements. Furthermore, nanocomposites were applied on mild steel substrates, and their corrosion protection and barrier performance were evaluated using electrochemical impedance spectroscopy (EIS). Adhesion loss measurements of coatings after 240 h exposure to 3.5 wt % NaCl solution were performed by pull-off adhesion testing. Also,... 

    Pathways to improve the austenite–ferrite phase balance during resistance spot welding of duplex stainless steels

    , Article Science and Technology of Welding and Joining ; Volume 24, Issue 1 , 2019 , Pages 8-15 ; 13621718 (ISSN) Arabi, S. H ; Pouranvari, M ; Movahedi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019

    Intercritical heat treatment temperature dependence of mechanical properties and corrosion resistance of dual phase steel

    , Article Materials Research ; Volume 22, Issue 1 , 2019 ; 15161439 (ISSN) Abedini, O ; Behroozi, M ; Marashi, P ; Ranjbarnodeh, E ; Pouranvari, M ; Sharif University of Technology
    Universidade Federal de Sao Carlos  2019
    Abstract
    This study investigated the effect of intercritical heat treatment temperature on the tensile properties, work hardening and corrosion resistance of dual phase steel. Ferrite-martensite dual phase steel with different martensite volume fractions were obtained after heat treatment at different intercritical temperatures. Microstructure, mechanical properties of steel were measured and the corrosion resistance was evaluated via polarization test. Tensile strength of the specimens increased by increasing the martensite volume fraction up to 48.2%. Further increase in martensite volume fraction led to decrease in tensile strength. Work hardening behavior analyzing showed that in DP steel with... 

    Application of sustainable saffron purple petals as an eco-friendly green additive for drilling fluids: A rheological, filtration, morphological, and corrosion inhibition study

    , Article Journal of Molecular Liquids ; Volume 315 , 2020 Ghaderi, S ; Haddadi, S. A ; Davoodi, S ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, effects of dried saffron purple petals (SPP) powder were examined on the rheological, fluid loss, and corrosion inhibition properties of bentonite-based drilling fluids. Drilling fluids containing different amounts of the SPP powder were prepared and their rheological behavior was investigated via the rotary viscometry and rheometric mechanical spectroscopy (RMS). Rotary viscometer results were fitted with Power-law, Bingham plastic, and Herschel-Bulkley models and the obtained data were compared with that of the base mud. All models fitted the rotary viscometer data with the determination coefficients higher than 0.93. The presence of 3 wt% of the SSP in the fluid... 

    Designing a dual-functional epoxy composite system with self-healing/barrier anti-corrosion performance using graphene oxide nano-scale platforms decorated with zinc doped-conductive polypyrrole nanoparticles with great environmental stability and non-toxicity

    , Article Chemical Engineering Journal ; Volume 382 , 15 February , 2020 Mohammadkhani, R ; Ramezanzadeh, M ; Saadatmandi, S ; Ramezanzadeh, B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Designing a novel epoxy composite system with dual self-healing/barrier anti-corrosion functions using graphene oxide (GO) nano-platforms decorated by polypyrrole (PPy) nanoparticles doped with zinc metal ions is the major objective of this research attempt. GO-PPy-Zn nanoplatform was fabricated via one-pot polymerization of pyrrole monomers on GO and two direct/indirect methods of zinc doping. In order to verify the PPy nanoparticles synthesis on GO sheets several analyses such as UV–visible, XPS, HR-TEM and FE-SEM were performed. The epoxy nanocomposite coatings containing GO-PPy and GO-PPy-Zn nanoplatforms were fabricated and applied on carbon steel. The nanocomposite coatings... 

    Photo-Electrochemical application of ZnOG thin film for in situ monitoring of steel sour corrosion

    , Article Surface Engineering and Applied Electrochemistry ; Volume 56, Issue 2 , 2020 , Pages 242-247 Razavizadeh, O ; Ghorbani, M ; Shafiekhani, A ; Sharif University of Technology
    Pleiades Publishing  2020
    Abstract
    Abstract: Further to traditional corrosion monitoring techniques for rated deteriorations, nowadays modern electrochemical monitoring methods are promising for the control of non-rated damage mechanisms. Considering carbon steel as the most commonly used alloy in the oil and gas industry, there are special grades under NACE MR0175 standard which are immune to sour corrosion. However, according to the industry reports, their immunity can be terminated by upset conditions or on site repairs. This issue will impose either a high operational risk or exorbitant maintenance and inspection costs. Hence, in this paper, a new monitoring technology framework is discussed to lessen a catastrophic... 

    Mild steel corrosion modelling in presence of hydrogen sulphide in aqueous solutions

    , Article Corrosion Engineering Science and Technology ; Volume 43, Issue 4 , 2008 , Pages 324-327 ; 1478422X (ISSN) Shayegani, M ; Afshar, A ; Ghorbani, M ; Rahmaniyan, M ; Sharif University of Technology
    2008
    Abstract
    Corrosion of mild steel in aqueous solutions containing hydrogen sulphide was modelled under the condition that an iron sulphide film was formed on the steel surface. In the present model, the iron sulphide forms on the steel surface as a result of a solid state reaction between iron and hydrogen sulphide which has several steps. First a very thin film of iron sulphide nucleates on the steel surface. Then, due to further growth of the initial thin layer, a more porous layer of iron sulphide forms on the initial film. In the present model, it is assumed that mass transfer through the thin iron sulphide layer (i.e. adjacent to the steel substrate) controls the corrosion rate of steel in H 2S... 

    Microstructure evolution mechanism and corrosion behavior of transient liquid phase bonded 304l stainless steel

    , Article Metals and Materials International ; Volume 27, Issue 9 , 2021 , Pages 3417-3431 ; 15989623 (ISSN) Mirzaei, S ; Binesh, B ; Sharif University of Technology
    Korean Institute of Metals and Materials  2021
    Abstract
    Abstract: Transient liquid phase (TLP) bonding of 304L austenitic stainless steel was carried out using MBF-20 interlayer at 1070 °C with different holding times. The effect of bonding time on the microstructure and corrosion resistance of the TLP bonded samples was investigated aiming to obtain the optimal bonding time. The results showed that isothermal solidification was completed within 45 min at 1070 °C and shorter holding times gave rise to the formation of intermetallic compounds at the joint centerline. It was found that the solidification sequence in the joint region is as follows: (1) isothermal solidification of γ solid solution, (2) formation of ternary eutectic of γ + Ni boride... 

    Prediction of the degree of steel corrosion damage in reinforced concrete using field-based data by multi-gene genetic programming approach

    , Article Soft Computing ; Volume 26, Issue 18 , 2022 , Pages 9481-9496 ; 14327643 (ISSN) Rajabi, Z ; Eftekhari, M ; Ghorbani, M ; Ehteshamzadeh, M ; Beirami, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Unanticipated failure of reinforced concrete structures due to corrosion of steel rebar embedded in concrete causes to increase the demand for finding methods to forecast the service life of concrete structures. In this field, the success of machine learning-based methods leads to the use of multi-gene genetic programming (MGGP) method for classifying the degree of corrosion destruction of steel in reinforced concrete in this paper. Despite the common application of MGGP that is the symbolic regression, in this research, MGGP was adapted to use in classification tasks. Accordingly, a large field database has been collected from different regions in the Persian Gulf for modeling of MGGP and...