Loading...
Search for: strain-energy
0.008 seconds

    Characterization of anisotropic behaviour of ZK60 extrusion under stress-control condition and notes on fatigue modeling

    , Article International Journal of Fatigue ; Volume 127 , 2019 , Pages 101-109 ; 01421123 (ISSN) Pahlevanpour, A. H ; Behravesh, S. B ; Adibnazari, S ; Jahed, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The anisotropic fatigue behavior of ZK60 is investigated through stress-control tests along two different material directions: extrusion (ED) and radial (RD) directions. The in-plane random texture along RD promotes activation of twinning/detwinning deformations in both tension and compression reversals, which brings about a sigmoidal but near-symmetric shape for hysteresis loops. The stress-strain response along ED is asymmetric, which is attributed to different deformation mechanisms in tension and compression reversals. The higher fatigue strength along ED is related to lower plastic strain energy in this direction. An energy damage parameter showed a good correlation with tests performed... 

    An equivalent von Mises stress and corresponding equivalent plastic strain for elastic–plastic ordinary peridynamics

    , Article Meccanica ; Volume 54, Issue 7 , 2019 , Pages 1001-1014 ; 00256455 (ISSN) Asgari, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Simple formulas for calculating equivalent von Mises stress and von Mises effective plastic strain in an elastic–plastic ordinary peridynamic analysis are proposed. The equivalent von Mises stress is calculated by equating the deviatoric part of strain energy obtained from classical continuum mechanics and peridynamics. The effective plastic strain is proposed so that it reduced to uniaxial plastic strain in uniaxial tension test. Two example problems of the plate with a hole and a central crack under tension are considered to verify the validity of the proposed formulas. The plots of von Mises stress, equivalent plastic strain, plastic zone area and horizontal and vertical displacements are... 

    Separation of delamination modes in composite beams with symmetric delaminations

    , Article Materials and Design ; Volume 27, Issue 10 , 2006 , Pages 900-910 ; 02613069 (ISSN) Hamed, M. A ; Nosier, A ; Farrahi, G. H ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    Delaminated composite beam under general edge loading conditions is studied. Based on a technical engineering theory an analytical procedure for calculation of strain energy release rate and its separation into modes I and II of delamination is presented. By choosing a suitable displacement field based on second-order shear-thickness deformation theory and using the principle of minimum total potential energy, the equations of equilibrium are obtained along with the appropriate boundary conditions. The J integral and its definition for different modes of fracture is used for calculation of strain energy release rate and its separation into different modes. Double cantilever beam (DCB)... 

    A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method

    , Article Engineering with Computers ; 2021 ; 01770667 (ISSN) Liu, H ; Zhao, Y ; Pishbin, M ; Habibi, M ; Bashir, M. O ; Issakhov, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, frequency simulation and critical angular velocity of a size-dependent laminated rotary microsystem using modified couple stress theory (MCST) as the higher-order elasticity model is undertaken. The centrifugal and Coriolis impacts due to the spinning are taken into account. The size-dependent thick annular microsystem's computational formulation, non-classical governing equations, and corresponding boundary conditions are obtained by using the higher-order stress tensors and symmetric rotation gradient to the strain energy. By using a single material length scale factor, the most recent non-classical approach captures the size-dependency in the annular laminated microsystem.... 

    Effect of axially graded constraining layer on the free vibration properties of three layered sandwich beams with magnetorheological fluid core

    , Article Composite Structures ; Volume 255 , 2021 ; 02638223 (ISSN) Omidi Soroor, A ; Asgari, M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The free linear vibration of an adaptive sandwich beam consisting of a frequency and field-dependent magnetorheological fluid core and an axially functionally graded constraining layer is investigated. The Euler-Bernoulli and Timoshenko beam theories are utilized for defining the longitudinal and lateral deformation of the sandwich beam. The Rayleigh-Ritz method is used to derive the frequency-dependent eigenvalue problem through the kinetic and strain energy expressions of the sandwich beam. In order to deal with the frequency dependency of the core, the approached complex eigenmodes method is implemented. The validity of the formulation and solution method is confirmed through comparison... 

    Effect of thermal treatment on fracture behavior of solder joints at various strain rates: Comparison of cyclic and constant temperature

    , Article Engineering Failure Analysis ; Volume 128 , 2021 ; 13506307 (ISSN) Honarvar, S ; Nourani, A ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Fracture tests on Sn93Pb37 solder joints in a double cantilever beam (DCB) configuration were performed at two different strain rates of 10−5 and 0.03 s−1 under mode I loading conditions. In each case, the critical strain energy release rate for crack initiation, Jci, was obtained. Effects of storing specimens at a constant temperature of 75 °C and cyclic temperature varying between 32 and 75 °C were examined at these strain rates. In the strain rate of 0.03 s−1, storing samples in a constant or cyclic temperature caused the fracture energy to decrease significantly with respect to the specimens maintained in ambient temperature. The significant reduction in fracture energy by placing the... 

    Effects of geometrical and processing parameters on mechanical properties of auxetic polyurethane foams

    , Article SN Applied Sciences ; Volume 4, Issue 6 , 2022 ; 25233971 (ISSN) Abedini, N. H. Z ; Nourani, A ; Mohseni, M ; Hosseini, N ; Norouzi, S ; Bakhshayesh, P. R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    This study aimed to investigate the influence of processing parameters on the mechanical properties of auxetic polyurethane foams including Poisson’s ratio and Young’s modulus. 12 different processing scenarios were considered using the method of Plackett–Burman in the design of experiments with three replicates for each one. Eventually, 36 foams were prepared with different densities and initial thicknesses, heating temperatures and times, applied compression ratios, and the rest times between two heating steps. The microstructures of the conventional and auxetic samples were observed by scanning electron microscopy (SEM). All samples were subjected to tensile loading in one direction with... 

    Effects of stored strain energy on restoration mechanisms and texture components in an aluminum-magnesium alloy prepared by friction stir processing

    , Article Materials Science and Engineering A ; Volume 642 , August , 2015 , Pages 204-214 ; 09215093 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Gerlich, A. P ; Nosko, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Plates of AA5052 (Al-Mg) alloy in both annealed (solution-treated) and wrought (rolled) temper conditions were subjected to friction stir processing (FSP) at various w/. v pitch ratios from 4 to 28. rev.min/mm. The role of stored strain energy on the evolution of restoration mechanisms and crystallographic texture components were assessed in terms of microstructural features evaluated using electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) analysis. The results revealed that FSP significantly refined the grain structure and changed the crystallographic micro-texture components. The grain size of the annealed and wrought alloy was reduced from 49.4 and 9.7.... 

    Micromechanics and constitutive modeling of connective soft tissues

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 60 , 2016 , Pages 157-176 ; 17516161 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical... 

    A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 16, Issue 3 , 2017 , Pages 1077-1093 ; 16177959 (ISSN) Elyasi, N ; Karimi Taheri, K ; Narooei, K ; Karimi Taheri, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney–Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney–Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the... 

    Damage Detection of Offshore Jacket Structures Using Frequency Response Measurements

    , M.Sc. Thesis Sharif University of Technology Kianian, Morteza (Author) ; Golafshani, Ali Akbar (Supervisor)
    Abstract
    Structures face various loadings and confront different circumstances as they are built and used. This situation causes the aging structures to deteriorate, which would lead to a decrease in reliability and safety. In the recent decades, the need for systems to assure the integrity of structures in terms of their age, usage and level of safety when experiencing infrequent and extreme forces such as earthquakes, tornados, hurricanes, large waves has deeply been recognized. These systems are often referred to as structural health monitoring (SHM) in the literature. The main objective of such system is to increase reliable operating lifetime. In the case of offshore structures, utilizing... 

    Development of a Layer-wise Model For Prediction of Interlaminar Crack Growth in Laminated Composites Plates Under Cyclic Loading

    , M.Sc. Thesis Sharif University of Technology Kashani, Hossein (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    In the present work, the beginning and progressive growth of delamination in laminated composites plates has been studied. Interlaminar stresses at free edge of laminate may give rise to edge delamination and result in failure of laminate. So we need to determine the exact interlaminar stresses to predict the failure of laminated composites. A computer code based on layerwise theory that can obtain the exact interlaminar stresses been developed. Comparison between the present study and finite element software result showed the good agreement.A fracture mechanics approach is used to analysis delamination propagation between layers of composites laminate. In this approach damage propagation... 

    Observer-based vibration control of non-classical microcantilevers using extended Kalman filters

    , Article Applied Mathematical Modelling ; January , 2015 ; 0307904X (ISSN) Vatankhah, R ; Karami, F ; Salarieh, H ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In non-classical micro-beams, the strain energy of the system is determined by the non-classical continuum mechanics. In this study, we consider a closed-loop control methodology for suppressing the vibration of non-classical microscale Euler-Bernoulli beams with nonlinear electrostatic actuation. The non-dimensional form of the governing nonlinear partial differential equation of the system is introduced and converted into a set of ordinary differential equations using the Galerkin projection method. In addition, we prove the observability of the system and we design a state estimation system using the extended Kalman filter algorithm. The effectiveness and performance of the proposed... 

    A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    , Article Materials Science and Engineering C ; Volume 32, Issue 7 , 2012 , Pages 1993-2000 ; 09284931 (ISSN) Khoei, A. R ; Aramoon, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are... 

    Multi-scale modeling of surface effect via the boundary Cauchy-Born method

    , Article International Journal for Numerical Methods in Engineering ; Volume 85, Issue 7 , August , 2011 , Pages 827-846 ; 00295981 (ISSN) Qomi, M. J. A ; Aghaei, A ; Khoei, A. R ; Sharif University of Technology
    2011
    Abstract
    In this paper, a novel multi-scale approach is developed for modeling of the surface effect in crystalline nano-structures. The technique is based on the Cauchy-Born hypothesis in which the strain energy density of the equivalent continua is calculated by means of inter-atomic potentials. The notion of introducing the surface effect in the finite element method is based on the intrinsic function of quadratures, called as an indicator of material behavior. The information of quadratures is derived by interpolating the data from probable representative atoms in their proximity. The technique is implemented by the definition of reference boundary CB elements, which enable to capture not only... 

    Damage prediction for un-coated and coated aluminum alloys under thermal and mechanical fatigue loadings based on a modified plastic strain energy approach

    , Article Materials and Design ; Volume 66, Issue PB , 2015 , Pages 587-595 ; 02613069 (ISSN) Azadi, M ; Farrahi, G. H ; Winter, G ; Huter, P ; Eichlseder, W ; Sharif University of Technology
    Abstract
    In this article, a novel energy-based lifetime prediction model has been presented for uncoated and coated aluminum alloys, subjected to thermal and mechanical fatigue loadings. For this objective, isothermal and thermo-mechanical fatigue tests were performed on the A356.0 alloy, with and without thermal barrier coating systems. This model, which was based on the plastic strain energy, had three correction factors including temperature, strain and mean stress effects. The predicted lifetime showed a proper agreement with experimental data. By the present model, higher accuracy was obtained in comparison to other existed approaches. Besides, the present model had lower number of material... 

    Study of synergistic toughening in a bimodal epoxy nanocomposite

    , Article Journal of Reinforced Plastics and Composites ; Volume 34, Issue 4 , February , 2015 , Pages 281-292 ; 07316844 (ISSN) Keivani, M ; Khamesinia, A ; Bagheri, R ; Kouchakzadeh, M. A ; Abadyan, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    Toughening of epoxy with different types of modifiers produces a bimodal blend that might show better fracture resistance in comparison with single-modified ones. In this research, bimodal epoxy formulations including mixtures of glass microsphere and silica nanoparticles are explored for possible synergistic toughening. The influence of composition on the glass transition temperature (Tg), tensile characteristics, and fracture toughness (KIC) is investigated. Interestingly, a synergism in fracture toughness is observed when mixtures of modifiers were incorporated. For the fixed overall modifier content, KIC is higher when the volume fraction of glass microsphere is lesser than the volume... 

    Observer-based vibration control of non-classical microcantilevers using extended Kalman filters

    , Article Applied Mathematical Modelling ; Volume 39, Issue 19 , 2015 , Pages 5986-5996 ; 0307904X (ISSN) Vatankhah, R ; Karami, F ; Salarieh, H ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In non-classical micro-beams, the strain energy of the system is determined by the non-classical continuum mechanics. In this study, we consider a closed-loop control methodology for suppressing the vibration of non-classical microscale Euler-Bernoulli beams with nonlinear electrostatic actuation. The non-dimensional form of the governing nonlinear partial differential equation of the system is introduced and converted into a set of ordinary differential equations using the Galerkin projection method. In addition, we prove the observability of the system and we design a state estimation system using the extended Kalman filter algorithm. The effectiveness and performance of the proposed... 

    Thermo-elastic analysis of thick-walled cylinders made of Functionally Graded materials using the strain gradient elasticity

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 2 , 2010 , Pages 1-6 ; 9780791844168 (ISBN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Aerospace Division ; Sharif University of Technology
    Abstract
    In this paper, strain gradient thermo-elasticity formulation for Functionally Graded (FG) thick-walled cylinders is presented. Elastic strain energy density function is considered to be a function of gradient of strain tensor in addition to the strain tensor. The material properties are assumed to vary according to power law in radial direction. Using the constitutive equations and equation of equilibrium in the cylindrical coordinates, fourth order non-homogenous governing equation for thermo-elastic analysis of thick-walled FG cylinders subjected to thermal and mechanical loadings is obtained and solved numerically. Results show that the intrinsic length parameter affects the stress... 

    Free vibration analysis of functionally graded cylindrical shells stiffened by uniformly and non-uniformly distributed ring stiffeners

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 15 , 2010 , Pages 367-375 ; 9780791843888 (ISBN) Moeini, S. A ; Rahaei Fard, M ; Ahmadian, M. T ; Movahhedy, M. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Free vibration analysis of a transversely stiffened circular thin hollow cylinder made of functionally graded materials (FGMs) is analytically evaluated. Functionally graded materials are inhomogeneous composites which are usually made from a mixture of metal and ceramic. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses induced when two dissimilar materials with large differences in material properties are bonded. In this paper, application of an FGM made of two different materials is investigated by applying Ritz method. While cylinder is assumed to be thin, strain energy...