Loading...
Search for: strain-energy
0.008 seconds
Total 80 records

    Interface effects on elastic behavior of an edge dislocation in a core-shell nanowire embedded to an infinite matrix

    , Article International Journal of Solids and Structures ; Volume 50, Issue 7-8 , 2013 , Pages 1177-1186 ; 00207683 (ISSN) Gutkin, M. Y ; Enzevaee, C ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    The elastic behavior of an edge dislocation located inside the core of a core-shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the... 

    A hyperelastic constitutive model for rubber-like materials

    , Article European Journal of Mechanics, A/Solids ; Volume 38 , 2013 , Pages 144-151 ; 09977538 (ISSN) Khajehsaeid, H ; Arghavani, J ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    Hyperelastic behavior of isotropic incompressible rubbers is studied to develop a strain energy function which satisfies all the necessary characteristic properties of an efficient hyperelastic model. The proposed strain energy function includes only three material parameters which are somehow related to the physical quantities of the material molecular network. Moreover, the model benefits from mathematical simplicity, well suitting in all ranges of stretch and possessing the property of deformation-mode-independency. This reduces the required number of experimental tests for parameter calibration of the model. Results of the proposed model are compared with results of some available models... 

    A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation

    , Article Finite Elements in Analysis and Design ; Volume 62 , 2012 , Pages 18-27 ; 0168874X (ISSN) Naghdabadi, R ; Baghani, M ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing the logarithmic (or Hencky) strain as a more physical measure of strain, the time-dependent response of compressible viscoelastic materials is investigated. In this regard, we present a phenomenological finite strain viscoelastic constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The formulation is based on the multiplicative decomposition of the deformation gradient into elastic and viscoelastic parts, together with the use of the isotropic property of the Helmholtz strain energy function. Making use of a logarithmic mapping, we present an appropriate form of the proposed constitutive equations in the... 

    Visco-hyperelastic constitutive law for modeling of foam's behavior

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2940-2948 ; 02641275 (ISSN) Anani, Y ; Alizadeh, Y ; Sharif University of Technology
    2011
    Abstract
    This paper proposes a new visco-hyperelastic constitutive law for modeling the finite-deformation strain rate-dependent behavior of foams as compressible elastomers. The proposed model is based on a phenomenological Zener model, which consists of a hyperelastic equilibrium spring and a Maxwell element parallel to it. The hyperelastic equilibrium spring describes the steady state response. The Maxwell element, which captures the rate-dependency behavior, consists of a nonlinear viscous damper connected in series to a hyperelastic intermediate spring. The nonlinear damper controls the rate-dependency of the Maxwell element. Some strain energy potential functions are proposed for the two... 

    Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2900-2908 ; 02641275 (ISSN) Abadyan, M ; Bagheri, R ; Kouchakzadeh, M. A ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    2011
    Abstract
    In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM)... 

    Multi-scale modeling of surface effect via the boundary Cauchy-Born method

    , Article International Journal for Numerical Methods in Engineering ; Volume 85, Issue 7 , August , 2011 , Pages 827-846 ; 00295981 (ISSN) Qomi, M. J. A ; Aghaei, A ; Khoei, A. R ; Sharif University of Technology
    2011
    Abstract
    In this paper, a novel multi-scale approach is developed for modeling of the surface effect in crystalline nano-structures. The technique is based on the Cauchy-Born hypothesis in which the strain energy density of the equivalent continua is calculated by means of inter-atomic potentials. The notion of introducing the surface effect in the finite element method is based on the intrinsic function of quadratures, called as an indicator of material behavior. The information of quadratures is derived by interpolating the data from probable representative atoms in their proximity. The technique is implemented by the definition of reference boundary CB elements, which enable to capture not only... 

    Damage prediction for un-coated and coated aluminum alloys under thermal and mechanical fatigue loadings based on a modified plastic strain energy approach

    , Article Materials and Design ; Volume 66, Issue PB , 2015 , Pages 587-595 ; 02613069 (ISSN) Azadi, M ; Farrahi, G. H ; Winter, G ; Huter, P ; Eichlseder, W ; Sharif University of Technology
    Abstract
    In this article, a novel energy-based lifetime prediction model has been presented for uncoated and coated aluminum alloys, subjected to thermal and mechanical fatigue loadings. For this objective, isothermal and thermo-mechanical fatigue tests were performed on the A356.0 alloy, with and without thermal barrier coating systems. This model, which was based on the plastic strain energy, had three correction factors including temperature, strain and mean stress effects. The predicted lifetime showed a proper agreement with experimental data. By the present model, higher accuracy was obtained in comparison to other existed approaches. Besides, the present model had lower number of material... 

    Thermo-elastic analysis of thick-walled cylinders made of Functionally Graded materials using the strain gradient elasticity

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 2 , 2010 , Pages 1-6 ; 9780791844168 (ISBN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Aerospace Division ; Sharif University of Technology
    Abstract
    In this paper, strain gradient thermo-elasticity formulation for Functionally Graded (FG) thick-walled cylinders is presented. Elastic strain energy density function is considered to be a function of gradient of strain tensor in addition to the strain tensor. The material properties are assumed to vary according to power law in radial direction. Using the constitutive equations and equation of equilibrium in the cylindrical coordinates, fourth order non-homogenous governing equation for thermo-elastic analysis of thick-walled FG cylinders subjected to thermal and mechanical loadings is obtained and solved numerically. Results show that the intrinsic length parameter affects the stress... 

    An investigation to effective parameters on the damage of dual phase steels by acoustic emission using energy ratio

    , Article World Academy of Science, Engineering and Technology ; Volume 46 , 2010 , Pages 638-643 ; 2010376X (ISSN) Fallahi, A ; Khamedi, R ; Sharif University of Technology
    2010
    Abstract
    Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms... 

    Computational modeling of the transverse-isotropic elastic properties of single-walled carbon nanotubes

    , Article Computational Materials Science ; Volume 49, Issue 3 , 2010 , Pages 544-551 ; 09270256 (ISSN) Montazeri, A ; Sadeghi, M ; Naghdabadi, R ; Rafii-Tabar, H ; Sharif University of Technology
    2010
    Abstract
    Various experimental and theoretical investigations have been carried out to determine the elastic properties of nanotubes in the axial direction. Their behavior in transverse directions, however, has not been well studied. In this paper, a combination of molecular dynamics (MD) and continuum-based elasticity model is used to predict the transverse-isotropic elastic properties of single-walled carbon nanotubes (SWCNTs). From this modeling study, five independent elastic constants of an SWCNT in transverse directions are obtained by analyzing its deformations under four different loading conditions, namely, axial tension, torsion, uniform and non-uniform radial pressure. To find the elastic... 

    Constitutive modeling of rubberlike materials based on consistent strain energy density functions

    , Article Polymer Engineering and Science ; Volume 50, Issue 5 , 2010 , Pages 1058-1066 ; 00323888 (ISSN) Darijani, H ; Naghdabadi, R ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    Rubberlike materials are characterized by high deformability and reversibility of deformation. From the continuum viewpoint, a strain energy density function is postulated for modeling the behavior of these materials. In this paper, a general form for the strain energy density of these materials is proposed from a phenomenological point of view. Based on the Valanis-Landel hypothesis, the strain energy density of incompressible materials is expressed as the sum of independent functions of the principal stretches meeting the essential requirements on the form of the strain energy density. It is cleared that the appropriate mathematical expressions for constitutive modeling of these materials... 

    Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 3 , 2010 , Pages 591-602 ; 09544062 (ISSN) Darijani, H ; Naghdabadi, R ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    In this article, a strain energy density function of the Saint Venant-Kirchhoff type is expressed in terms of a Lagrangian deformation measure. Applying the governing postulates to the form of the strain energy density, the mathematical expression of this measure is determined. It is observed that this measure, which is consistent with the strain energy postulates, is a strain type with the characteristic function more rational than that of the Seth-Hill strain measures for hyperelastic materials modelling. In addition, the material parameters are calculated using a novel procedure that is based on the correlation between the values of the strain energy density (rather than the stresses)... 

    A computational model for atomistic-based higher-order continua using the FEM technique

    , Article Finite Elements in Analysis and Design ; Volume 137 , 2017 , Pages 26-39 ; 0168874X (ISSN) Khoei, A. R ; Rezaei Sameti, A ; Sharif University of Technology
    Abstract
    In this paper, an atomistic-based higher-order continuum model is developed in the framework of nonlinear finite element method to present the geometrically nonlinear behavior of nano-structures. In order to model the inhomogeneous deformation within the Cauchy-Born hypothesis, the higher-order CB hypothesis is presented based on a hierarchical multi-scale technique, in which the constitutive model of higher-order continuum is obtained using the derivatives of strain energy density. In order to avoid the use of C1–continuity element, as an alternative procedure, the mixed-type element is utilized employing the nodal deformation gradient as additional degrees of freedom. The relation between... 

    Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model

    , Article International Journal of Engineering Science ; Volume 121 , 2017 , Pages 91-107 ; 00207225 (ISSN) Fallah, A ; Ahmadian, M. T ; Mohammadi Aghdam, M ; Sharif University of Technology
    Abstract
    In this paper, a micromechanical study on rate-dependent behavior of connective tissues is performed. To this end, a hyper viscoelastic constitutive model consisting a hyperelastic part for modeling equilibrium response of tissues and a viscous part using a hereditary integral is proposed to capture the time-dependent behavior of the tissues. With regard to the hierarchical structure of the tissue, strain energy function are developed for modeling elastic response of the tissue constituents i.e. collagen fibers and ground matrix. The rate-dependency is incorporated into the model using a viscous element with rate-dependent relaxation time. The proposed constitutive model is implemented into... 

    Free vibration analysis of cylindrical panels with spiral cross section

    , Article International Journal of Mechanical Sciences ; Volume 133 , 2017 , Pages 376-386 ; 00207403 (ISSN) Taraghi Osguei, A ; Ahmadian, M. T ; Asghari, M ; Pugno, N. M ; Sharif University of Technology
    Abstract
    In this paper, free vibration of open noncircular cylinders with spiral cross section are studied under arbitrary boundary conditions. For deriving the strain energy function, Kirchhoff-Love hypotheses are employed. To obtain the solutions, Rayleigh-Ritz technique is implemented by selecting Chebyshev orthogonal polynomials of first kind as admissible displacement functions in three directions. Convergence of the proposed formulation is verified for spiral cylindrical panel and the results are compared with those of ABAQUS. Parametric study is undertaken to highlight the effect of inner radius, separation distance, subtended angle, thickness, and length of the spiral cylinders on the free... 

    A shell model for free vibration analysis of carbon nanoscroll

    , Article Materials ; Volume 10, Issue 4 , 2017 ; 19961944 (ISSN) Taraghi Osguei, A ; Ahmadian, M. T ; Asghari, M ; Pugno, N. M ; Sharif University of Technology
    Abstract
    Carbon nanoscroll (CNS) is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy... 

    Strain energy-based homogenization of nonlinear elastic particulate composites

    , Article International Journal of Engineering Science ; Volume 47, Issue 10 , 2009 , Pages 1038-1048 ; 00207225 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    The macroscopic constitutive law for a heterogeneous solid containing two dissimilar nonlinear elastic phases undergoing finite deformation is obtained. Attention is restricted to the case of spherical symmetry such that only the materials consisting of an irregular suspension of perfectly spherical particles experiencing all-round uniform loading are considered which leads to a one-dimensional modeling. For the homogenization procedure, a strain-energy based scheme which utilizes Hashin's composite sphere is employed to obtain the macroscopic stress-deformation relation added by the initial volume fraction of the particles. As applications of the procedure, the closed-form macroscopic... 

    Modeling of visco-hyperelastic behavior of foams

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 12 , 2009 , Pages 425-433 ; 9780791848739 (ISBN) Anani, Y ; Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new visco-hyperelastic constitutive law for describing the rate dependent behavior of foams is proposed. The proposed model was based on a phenomenological Zener model: a hyperelastic equilibrium spring, which describes the steady-state, long-term response, parallel to a Maxwell element, which captures the rate-dependency. A nonlinear viscous damper connected in series to a hyperelastic intermediate spring, controls the rate-dependency of the Maxwell element. Therefore, the stress is the sum of equilibrium stress on the equilibrium spring and overstress on the intermediate spring. In hyperelastic theory stress is not calculated directly as in the case of small-strain, linear... 

    Modeling of rate dependent finite deformation viscoelastic behavior of foams

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 12 , 2009 , Pages 435-442 ; 9780791848739 (ISBN) Anani, Y ; Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    The behavior of foams is typically rate-dependent and viscoelastic. In this paper, multiplicative decomposition of the deformation gradient and the second law of thermodynamics are employed to develop the differential constitutive equations for isotropic viscoelastic foams experiencing finite deformations, from a phenomenological point of view, i.e. without referring to micro-structural viewpoint. A model containing an equilibrium hyperelastic spring which is parallel to a Maxwell model has been utilized for introducing constitutive formulation. The deformation gradient tensor is decomposed into two parts: elastic deformation gradient tensor and viscoelastic deformation gradient tensor. A... 

    Energy pairs in the micropolar continuum

    , Article International Journal of Solids and Structures ; Volume 44, Issue 14-15 , 2007 , Pages 4810-4818 ; 00207683 (ISSN) Ramezani, S ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    In this paper, the concept of energy pairs in the micropolar continuum is introduced. A brief review of the micropolar continuum theory is presented for using in the subsequent derivations. A mathematical Lagrangian strain and a wryness tensor for the micropolar continuum are introduced. Using the first law of thermodynamics and for isothermal processes, the power of deformation is obtained and the energy pairs in the Eulerian and Lagrangian descriptions are defined. Also, the micropolar stress and couple stress tensors which are energy pairs to the micropolar Lagrangian strain and wryness measures are determined. © 2006 Elsevier Ltd. All rights reserved