Loading...
Search for: superparamagnetism
0.009 seconds

    Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma

    , Article Biomaterials Research ; Volume 24, Issue 1 , 2020 Ghasemi Goorbandi, R ; Mohammadi, M. R ; Malekzadeh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods: Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate... 

    Synthesis of pseudopolyrotaxanes-coated superparamagnetic Iron oxide nanoparticles as new MRI contrast agent

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 103 , March , 2013 , Pages 652-657 ; 09277765 (ISSN) Hosseini, F ; Panahifar, A ; Adeli, M ; Amiri, H ; Lascialfari, A ; Orsini, F ; Doschak, M. R ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized and coated with pseudopolyrotaxanes (PPRs) and proposed as a novel hybrid nanostructure for medical imaging and drug delivery. PPRs were prepared by addition of α-cyclodextrin rings to functionalized polyethylene glycol (PEG) chain with hydrophobic triazine end-groups. Non-covalent interactions between SPIONs and PPRs led to the assembly of SPIONs@PRs hybrid nanomaterials. Measurements of the 1H Nuclear Magnetic Resonance (NMR) relaxation times T1 and T2 allowed us to determine the NMR dispersion profiles. Comparison between our SPIONs@PRs hybrid nano-compound and the commercial SPION compound, Endorem®, showed a higher... 

    Synthesis of magnesium-based Janus micromotors capable of magnetic navigation and antibiotic drug incorporation

    , Article New Journal of Chemistry ; Volume 44, Issue 17 , 2020 , Pages 6947-6957 Paryab, A ; Madaah Hosseini, H. R ; Abedini, F ; Dabbagh, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In the present study, bubble-driven magnesium-based micromotors were fabricated through a shading method, and the potential of magnetic guidance of magnesium-based Janus micro/nanomotors through functionalization with superparamagnetic iron oxide nanoparticles (SPIONs) was investigated for the first time. SPIONs had physical electrostatic attraction with the positively charged magnesium spheres due to negative charges on their surfaces. It was also found that upon applying a field gradient, the micromotors’ velocity increased by 13% unlike other magnetically navigated spherical magnesium-based micromotors which only show a change in direction. In this work the cytotoxicity of the moving... 

    Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol

    , Article Journal of Colloid and Interface Science ; Volume 345, Issue 1 , 2010 , Pages 64-71 ; 00219797 (ISSN) Jafari, T ; Simchi, A ; Khakpash, N ; Sharif University of Technology
    Abstract
    Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometere (VSM), UV-visible spectroscopy, and Fourier... 

    Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions

    , Article Applied Surface Science ; Volume 353 , 2015 , Pages 350-362 ; 01694332 (ISSN) Tayyebi, A ; Outokesh, M ; Moradi, S ; Doram, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Magnetite nanoparticles with a size distribution of 15-21 nm were synthesized and decorated onto surface of graphene oxide by ultrasound assisted precipitation. Size and size distribution of the obtained M-GO hybrid were appreciably finer than the hybrids prepared by stirring method. M-GO is a superparamagnetic material with saturation magnetization of 31 emu g-1. The Langevin equation was successfully applied for estimation of size of Fe3O4 nanoparticles in M-GO hybrid, with maximum error of 17.5%. The study put forward a formation mechanism for M-GO, based on instrumental analyses. Adsorption isotherms of Sr2+ and Co2+ ions, which were fitted by Langmuir monolayer... 

    Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy

    , Article Chemical Papers ; 2020 Hedayatnasab, Z ; Dabbagh, A ; Abnisa, F ; Karimian, H ; Abu Kasim, N. H ; Wan Daud, W. M. A ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as promising magnetic nanoheating agents for diagnostic as well as therapeutic applications due to their biocompatibility and tunability of magnetic properties. These nanoheating agents are commonly synthesized by coprecipitation of two iron precursors, though applying less amount of these chemicals may minimize the toxicity risks for biomedical purposes. The aim of this study is to address this issue by considering the high oxidation vulnerability of ferrous ions to ferric ions to synthesize SPIONs via a single-iron precursor under four varied oxidative conditions. The obtained results implied that the properties... 

    Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy

    , Article Chemical Papers ; Volume 75, Issue 2 , 2021 , Pages 669-679 ; 03666352 (ISSN) Hedayatnasab, Z ; Dabbagh, A ; Abnisa, F ; Karimian, H ; Abu Kasim, N. H ; Wan Daud, W. M. A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as promising magnetic nanoheating agents for diagnostic as well as therapeutic applications due to their biocompatibility and tunability of magnetic properties. These nanoheating agents are commonly synthesized by coprecipitation of two iron precursors, though applying less amount of these chemicals may minimize the toxicity risks for biomedical purposes. The aim of this study is to address this issue by considering the high oxidation vulnerability of ferrous ions to ferric ions to synthesize SPIONs via a single-iron precursor under four varied oxidative conditions. The obtained results implied that the properties... 

    Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification

    , Article Carbon ; Vol. 69 , April , 2014 , pp. 230-238 ; ISSN: 00086223 Meidanchi, A ; Akhavan, O ; Sharif University of Technology
    Abstract
    Superparamagnetic ZnFe2O4/reduced graphene oxide (rGO) composites containing ZnFe2O4 nanoparticles (with ∼5-20 nm sizes) attached onto rGO sheets (with ∼1 μm lateral dimensions) were synthesized by hydrothermal reaction method. By increasing the graphene content of the composite from 0 to 40 wt%, the size as well as the number of the ZnFe2O4 nanoparticles decreased and the saturated magnetization of the composites reduced from 10.2 to 1.8 emu/g, resulting in lower responses to external magnetic fields. Concerning this, the time needed for 90% separation of ZnFe2O4/rGO (40 wt%) composite from its solution (2 mg/mL in ethanol) was found 60 min in the presence of an external magnetic field (∼1... 

    Superparamagnetic nanoparticles for epilepsy detection

    , Article World Congress on Medical Physics and Biomedical Engineering, 2015, 7 June 2015 through 12 June 2015 ; Volume 51 , June , 2015 , Pages 1237-1240 ; 16800737 (ISSN) ; 9783319193878 (ISBN) Pedram, M. Z ; Shamloo, A ; Alasty, A ; Ghafar Zadeh, E ; Jaffray D. A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Epilepsy is the most common neurological disorder that is known with uncontrolled seizure. Around 30% of patients with epilepsy resist to all forms of medical treatments and therefore, the removal of epileptic brain tissue is the only solution to get these patients free from chronical seizures. The precise detection of an epileptic zone is key to its treatment. In this paper, we propose a method of epilepsy detection using brain magnetic field. The possibility of superparamagnetic nanoparticle (SPMN) as sensors for the detection of the epileptic area inside the brain is investigated. The aggregation of nanoparticles in the weak magnetic field of epileptic brain is modeled using potential... 

    Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 19 , 2009 , Pages 8124-8131 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Hafeli, U. O ; Sharif University of Technology
    2009
    Abstract
    Superparamagnetic iron oxide nanoparticles with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection, and cell/protein separation. To enhance the applicability of magnetic nanoparticles, two main problems must be overcome. First, as the drug coats the particle surface, a significant portion of it is quickly released upon injection (burst effect). Therefore, only small amounts of the drug reach the specific site after, for example, magnetic drug targeting. Second, once the surface-derivatized nanoparticles are inside the cells, the coating is likely digested, leaving the bare particles... 

    Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy

    , Article Advanced Drug Delivery Reviews ; Volume 63, Issue 1-2 , January–February , 2011 , Pages 24-46 ; 0169409X (ISSN) Mahmoudi, M ; Sant, S ; Wang, B ; Laurent, S ; Sen, T ; Sharif University of Technology
    2011
    Abstract
    At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together... 

    Superparamagnetic enzyme-graphene oxide magnetic nanocomposite as an environmentally friendly biocatalyst: Synthesis and biodegradation of dye using response surface methodology

    , Article Microchemical Journal ; Volume 145 , 2019 , Pages 547-558 ; 0026265X (ISSN) Kashefi, S ; Borghei, S. M ; Mahmoodi, N. M ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    The unique properties of graphene oxide (GO) nanosheets were integrated with the superparamagnetic characteristics of the CuFe2O4 nanoparticles to synthesize the magnetic graphene oxide (MGO), which was chemically modified with 3-amino propyl trimethoxy silane (APTMS) to functionalize the amine group on MGO (MGO-NH2). Afterward, MGO-NH2 was activated with glutaraldehyde (GLU) as a crosslinking agent to synthesize the functionalized MGO (fMGO) and its capability toward covalent Laccase immobilization was investigated. The comprehensive structural analysis using various characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating... 

    Study the effect of ultrasonic irradiation and surfactant/fe ions weight ratio on morphology and particle size of magnetite nanoparticles synthesised by co-precipitation for medical application

    , Article World Academy of Science, Engineering and Technology ; Volume 64 , 2010 , Pages 457-460 ; 2010376X (ISSN) Azimipour Meibod, S. S ; Pourafshary, P ; Madaah Hosseini, H. R ; Sharif University of Technology
    2010
    Abstract
    A biocompatible ferrofluid have been prepared by coprecipitation of FeCl 2.4H 2O and FeCl 3.6H 2O under ultrasonic irradiation and with NaOH as alkaline agent. Cystein was also used as capping agent in the solution. Magnetic properties of the produced ferrofluid were then determined by VSM test and magnetite nanoparticles were characterized by XRD and TEM techniques. The effect of surfactant to Fe ion weight ratio was also studied during this project by using two different amount of Dextran. Results showed the presence of a biocompatible superparamagnetic ferrofluid including magnetite nanoparticles with particle size ranging under 20 nm. The increase in the surfactant content results in the... 

    Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 25, Issue 7 , 2012 , Pages 2443-2455 ; 15571939 (ISSN) Tehrani, F. S ; Daadmehr, V ; Rezakhani, A. T ; Akbarnejad, R. H ; Gholipour, S ; Sharif University of Technology
    Springer  2012
    Abstract
    Ferrite nanocrystals are an interesting material due to their rich physical properties. Here we add nonmagnetic dopants Zn and Cu to nickel ferrite nanocrystals, Ni1-xMxFe2O4 (0 ≤ x ≤ 1, M = Cu, Zn), and study how relevant properties of the samples are modified accordingly. Basically, these dopings cause a rearrangement of Fe +3 ions into the two preexisting octahedral and tetrahedral sites. In fact, this, we show, induces pertinent magnetic properties of the doped samples. In the case of the Cu-doping, the Jahn-Teller effect also emerges, which we identify through the Fourier Transform Infra-Red Spectroscopy of the samples. Moreover, we show an increase in the lattice parameters of the... 

    Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications [electronic resource]

    , Article Journal of Magnetism and Magnetic Materials ; Volume 324, Issue 23, November 2012, Pages 3997–4005 Maleki H. (Homa) ; Simchi, A ; Imani, M ; Costa, B.F.O ; Sharif University of Technology
    Abstract
    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the  

    Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    , Article Journal of Magnetism and Magnetic Materials ; Volume 324, Issue 23 , November , 2012 , Pages 3997-4005 ; 03048853 (ISSN) Maleki, H ; Simchi, A ; Imani, M ; Costa, B. F. O ; Sharif University of Technology
    2012
    Abstract
    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe 3 and Fe 2], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via... 

    RSM based engineering of the critical gelation temperature in magneto-thermally responsive nanocarriers

    , Article European Polymer Journal ; Volume 120 , 2019 ; 00143057 (ISSN) Khodaei, A ; Bagheri, R ; Madaah Hosseini, H. R ; Bagherzadeh, E ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The multistep release of therapeutic agents in the theranostic particulate systems has remained as a challenge in smart drug delivery. In this study, superparamagnetic nanoparticles of Fe3O4 were coated with a blend of F127/F68 grades of pluronic in order to adjust the lower critical solution temperature (LCST) and consequently engineering of the release temperature. Pluronic as a biocompatible thermo-sensitive polymer is frequently used as a self-emulsifying drug delivery system. Magnetite nanoparticles with double layer coating of oleic acid and pluronic F127 have been reported as an on-demand smart carrier for hydrophobic drugs. LCST was examined using differential scanning calorimetry... 

    Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy

    , Article Biomaterials ; Volume 232 , 2020 Rabiee, N ; Tavakkoli Yaraki, M ; Mokhtari Garakani, S ; Mokhtari Garakani, S ; Ahmadi, S ; Lajevardi, A ; Bagherzadeh, M ; Rabiee, M ; Tayebi, L ; Tahriri, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery... 

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Preparation and biological evaluation of [67Ga]-labeled- superparamagnetic nanoparticles in normal rats

    , Article Radiochimica Acta ; Volume 97, Issue 1 , 2009 , Pages 51-56 ; 00338230 (ISSN) Jalilian, A. R ; Panahifar, A ; Mahmoudi, M ; Akhlaghi, M ; Simchi, A ; Sharif University of Technology
    R. Oldenbourg Verlag GmbH  2009
    Abstract
    Gallium-67 labeled superparamagnetic iron oxide nanoparticles ([ 67Ga]-SPION were prepared and evaluated for their altered biodistribution in normal rats. Superparamagnetic iron oxide nanoparticles (SPION) with narrow size distribution were synthesized by a co-precipitation technique using ferrous salts at Fe3+/Fe2+ = 2 molar ratio followed by structure identification using XRD, TGA, DSC, VSM, HRSEM, TEM and FT-IR techniques (≈ 5 nm diameter). In order to trace SPION bio-distribution, the radiolabeled iron oxide nanoparticles were prepared using 67Ga with a high labeling efficiency (over 96%, RTLC method) and they also showed an excellent stability at room temperature for at least 4 d. The...