Loading...
Search for: superparamagnetism
0.011 seconds
Total 80 records

    Synthesis and Characterization of Hybrid Smart Nanohydrogel Pluronic-Chitosan/Graphene/Magnetic Nanoparticles with Ability of Drug Release to Cure Cancer

    , M.Sc. Thesis Sharif University of Technology Tohidi, Azadeh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    In recent years, many efforts have been made in the field of drug delivery with hydrogel nanoparticles. This class of materials has been at the center of attention in medical science due to their improved physical and biological properties including high amount of water preservation, penetration, bio capampatibility and physical structure similar to outside matrices of tissue. Among various applications in medical sciences, drug delivery based on hydrogels is very attractive. Hydrogels can protect drugs from aggressive environmental factors such as pH and thermal changes, and presence of enzymes. The porosity of hydrogels facilitates drug loading into the gel matrix and provides a... 

    Synthesis, Characterization and Surface Modification of Iron Oxide Nanoparticles for Biomedical Applications

    , Ph.D. Dissertation Sharif University of Technology Mahmoudi, Morteza (Author) ; Simchi, Abdolreza (Supervisor) ; Imani, Mohammad (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection, and cell/protein separation. Since the particles with various sizes exhibit different flow rates in the same environment (same capillary size), it is essential to use particles of a desirable size for targeted drug delivery and imaging. Particles of different sizes may be exposed to different viscosities and behave differently, particularly with regard to their velocities as they move through capillaries. In the present work, SPION with different size, purity, shape and... 

    Study on the Performance of Magnetic Nanoparticles in Hyper-thermic Treatment of Cancerous Tumors, by Heating an MRI Apparatus

    , M.Sc. Thesis Sharif University of Technology Payami Golhin, Zahra (Author) ; Outokesh, Mohammad (Supervisor) ; Nourani, Mohammad Reza (Supervisor)
    Abstract
    The aim of this study was to investigate the rate of increase in temperature of a phantom equivalent to body tissue by different groups of magnetic iron nanoparticles in the external magnetic field to kill cancer cells based on the hyperthermia method. To achieve this goal, three groups of dextran magnetic nanoparticles with different properties and reduced iron oxide-graphene oxide magnetic nanoparticles by M-rGO supercritical synthesis method were used. After XRD, FTIR, SEM, FESEM, VSM, TEM characterization tests, these materials were placed in a phantom made of agarose gel and with the same properties, in a magnetic field with fixed characteristics for all groups and during the process of... 

    Study on the Efficiency of Graphene and Graphene Oxide-coated Iron Oxide Nanoparticles in the Treatment of Cancer Cells to Hyperthermia

    , M.Sc. Thesis Sharif University of Technology Azizi Darsara, Fatemeh (Author) ; Otukesh, Mohammad (Supervisor) ; Saligheh Rad, Hamid Reza (Co-Advisor)
    Abstract
    The main methods have been used clinically for cancer treatment are included: surgery, chemotherapy, radiation therapy and hyperthermia. Hyperthermia (heat therapy) treatment method in which by raising the temperature of the tumor it removed. Magnetic hyperthermia is known as a kind of hyperthermia that have been represent appropriate results. In this study, using iron oxide nanoparticle coated with graphene for cancer treatment under a magnetic field of the laser. In the first stage, graphene oxide nanosheets and nanoparticles Magntayt are synthesized by chemical oxidation and co-precipitation, respectively. At the end, the nanoparticles on the substrate of graphene layer is obtained... 

    Synthesis and Characterization of the Multifunctional Fe3O4@Mn3O4-LCysteine-g-C3N4 QDs System as a Contrast Agent for Dual-Model Magnetic Resonance and Fluorescence Imaging

    , M.Sc. Thesis Sharif University of Technology Moeini, Ali (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Khachatourian, Adrine Malek (Supervisor)
    Abstract
    Cancer is one of the most important problems that affects public health. If this disease is diagnosed quickly in the patient's body, it can be prevented and treated by determining the stage of the disease and establishing a treatment protocol. Magnetic resonance imaging (MRI) and fluorescence imaging (FI) are among the imaging methods. In order to increase the contrast of images, researchers have turned to the synthesis of materials under contrast agents, which improve diagnostic sensitivity. Synthesis of nanoparticles as multi-mode contrast agents can enhance imaging methods. In this research, the synthesis and characterization of the multifunctional Fe3O4-Mn3O4-LCysteine@g-C3N4 QDs system... 

    Synthesis and Characterization of Dextran Based Magnetic Nanogels as a Gene Delivery Vector and Investigating its Gene Therapy Efficiency

    , M.Sc. Thesis Sharif University of Technology Azadpour, Behnam (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Arefian, Ehsan (Supervisor)
    Abstract
    The use of magnetic nanoparticles modified with proper surface agent and the ability of controlling by magnetic field, that can induce colloidal stability, is considered as a vector to transfer DNA plasmid, or pDNA in short, in the field of gene therapy. In thiss research, pH-responsive dextran-based magnetic nanogels (dextMNGs) were synthesized via inverse mini-emulsion method. Fourier transformation infrared spectroscopy (FTIR) showed that magnetite nanoparticles (MNPs) were successfully modified with arginine and had amine terminals. FTIR, also, proved that aldehyded dextran was crosslinked by arginine modified magnetite nanoparticles (RMNPs) via pH sensitive imine bonds. X-ray... 

    , M.Sc. Thesis Sharif University of Technology Bagheri Mehrabadi, Niloofar (Author) ; Simchi, Abdol Reza (Supervisor) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    The use of magnetic compounds for drug delivery and magnetic imaging has been studied in many studies. The easy use of magnetic particles makes them widespread. By applying a magnetic field, the particles reach the desired position and return to the original state by cutting off the field. The use of these magnetic materials in the nanoscale also adds other benefits, including: convenient and rapid transfer of nanoparticles, rapid repulsion of the kidneys, reducing the risk of overdose, etc. In recent years, the use of quantum dots for the diagnosis and treatment of tumors has attracted much attention. The use of hybrid quantum dots and magnetic nanoparticles can incorporate the desired... 

    Preparation and Evaluation of Doxorubicin-loaded Fe3O4\Chitosan Magnetic Nanocomposite for Drug Delivery System in Cancer Therapy

    , M.Sc. Thesis Sharif University of Technology Tajeri, Razieh (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Recent drug delivery strategies have attempted to maximize the concentration of chemotherapeutic molecules into the tumors, while minimizing their systemic distribution. Doxorubicin has been widely used for a variety of cancers, successfully producing regression in acute leukaemia, lymphomas, soft-tissue and osteogenic sarcomas, paediatric malignancies and adult solid tumours, in particular breast and lung carcinomas. Common adverse effects of doxorubicin include hair loss, myelosuppression, nausea and vomiting, oral mucositis, oesophagitis, diarrhoea, skin reactions and serious reactions include hypersensitivity reactions, radiation recall, heart damage and liver dysfunction. Chitosan has... 

    Surface Modification of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs)for Cell Separation

    , M.Sc. Thesis Sharif University of Technology Shirzadeh, Ghazale (Author) ; Maddah Hoseini, Hamid Reza (Supervisor)
    Abstract
    The aim of this project is the surface modification of super para magnetic iron oxide (SPIONs), leading to oriented covalent bonding of antibody(AB) to these nanoparticles (NPs) and improve the efficiency of cell separation at MACS columns. For this purpose, SPIONs synthesized by co-precipitation method, and the stability of colloidal NPs then was provided by coating with Dextran . We used TGA to measure weight percentage of dextran. Some properties like particle size, hydrodynamic diameter, presence of coating and superparamagnetic properties were characterized by XRD (16 nm), FTIR, DLS (73 nm), TEM (20nm) and VSM (≈76/78 emu/g) method, respectively. Then we tried to immobilize AB on NPs... 

    Synthesis and Characterization of Colloidal Superparamagnetic Iron Oxide and Iron/Iron Oxide Nanoparticles as MRI Contrast Agent

    , Ph.D. Dissertation Sharif University of Technology Masoudi, Afshin (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Seyed Reyhani, Morteza (Supervisor)
    Abstract
    As contrast enhancement agent, two different structures of superparamagnetic nanoparticles were synthesized. Iron oxide nanoparticles were prepared through an alkaline coprecipitation method of Iron (II) and (III) ions. PEG-6000 was used as biocapping material and its effect on particle size, colloidal stability and cytotoxicity was evaluated. On the other hand, novel core/shell structures were produced by NaBH4 reduction process of iron (III) in an aqueous media following by further oxidation by two different methods using (CH3)3NO oxygen transferring agent and exposure to oxygen flow. In both cases, structural examinations were conducted via X-ray diffraction, electron microscopy and... 

    Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles Via Microemulsion (Reverse Micelle) Method as MRI Contrast Agents

    , M.Sc. Thesis Sharif University of Technology Pelaschi, Mohammad Ali (Author) ; Madah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Iron oxide nanoparticles were synthesized using microemulsion technique as MRI contrast agents. Utilization of nanoparticles for biological applications and in this case as MRI contrast agents needs particles to be of small size and also narrow size distribution. For this aim, the effect of several parameters on size and size distribution has been studied. These parameters include water/surfactant ratio, precursor’s concentration and amount of polymer employed to improve nanoparticles colloidal stability. XRD, FE-SEM and TEM results reveal that the synthesized nanoparticles had small size (about 10 nm iron oxide core and 20 nm overall diameter) and possessed narrow size distribution (15-21... 

    Study of the Effect of Surfactant and Fe Concentration on the Size and Physical Properties of Magnetic Fe-Au Core-Shell Nano Particles, Synthesized Via Reverse Nicelle

    , M.Sc. Thesis Sharif University of Technology Molavi Kakhki, Amin (Author) ; Simchi, Abdolreza (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    The aim of this research is to study the effect of surfactant type and the concentration reactants on the size, shape and magnetic properties of iron-gold core-shell magnetic nanoparticles (NPs) useable for biomedical application. The reverse micelle procedure was employed to synthesize iron NPs using two surfactants of CTAB and SDS. A gold shell with a thickness in the range of 10 to 40 nm was induced by reverse micelle method in order to prevent oxidation of the iron core. The size and morphology of NPs were studied by transition electron microscopy (TEM). It was found that the size of NPs increases by the increasing the reactants concentration while the morphology of the NPs was not... 

    Determination of Protein Absorption Profile at the Surface of Biocompatible Superparamagnetic Iron Oxide Nanoparticles using Gel Electrophoresis

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Forough (Author) ; Hormozi Nezhad, Mohammad Reza (Supervisor) ; Mahmoudi, Morteza (Supervisor)
    Abstract
    Superparamagnetic Iron Oxide NPs (SPIONs) because of their multi-task capabilities (e.g. magnetic labeling, cell isolation, hyperthermiaand controlled drug release) have been recognized as one of the most promising NPs for theranosis applications.When NPs come in contact with a biological medium, the surfaces of them are covered by biomolecules (e.g., proteins, natural organic materials, and enzymes). Therefore, what a biological entity, such as cells, tissues, and organs, sees when interacting with NPs is different original pristine surface of the NPs and actually is hard protein corona. Shape of NPs has a great impact on proteins adsorb onto its surface and consequently on the way that... 

    Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications [electronic resource]

    , Article Journal of Magnetism and Magnetic Materials ; Volume 324, Issue 23, November 2012, Pages 3997–4005 Maleki H. (Homa) ; Simchi, A ; Imani, M ; Costa, B.F.O ; Sharif University of Technology
    Abstract
    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the  

    Preparation and biological evaluation of [67 Ga]-labeled-superparamagnetic iron oxide nanoparticles in normal rats

    , Article Journal of Nuclear Science and Technology ; Volume 97, Issue 1 , September , 2009 , Pages 51–56 Jalilian, A. R ; Panahifar, A ; Mahmoudi, M. (Morteza) ; Akhlaghi, M. (Mahdi) ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Gallium-67 labeled superparamagnetic iron oxide nanoparticles were prepared and evaluated for their altered biodistribution in normal rats. Superparamagnetic iron oxide nanoparticles with narrow size distribution were synthesized by co-precipitation technique using ferric and ferrous salts at molar ratio Fe3+/Fe2+=2:1 followed by structure identification using XRD, thermo gravimetric analysis , differential scanning calorimetric , vibrating sample magnetometer, high-resolution scanning electron microscopy,transmission electron microscopy and fourier transform infrared absorption techniques. In order to trace superparamagnetic iron oxide nanoparticles bio-distribution, the radiolabeled iron... 

    Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 21 , 2014 , p. 3306-3314 Akhavan, O ; Meidanchi, A ; Ghaderi, E ; Khoei, S ; Sharif University of Technology
    Abstract
    A magneto-photothermal therapy for cancer (in vitro photothermal therapy of prostate cancer cells and in vivo photothermal therapy of human glioblastoma tumors in the presence of an external magnetic field) was developed using superparamagnetic zinc ferrite spinel (ZnFe2O4)-reduced graphene oxide (rGO) nanostructures (with various graphene contents). In vitro application of a low concentration (10 μg mL-1) of the ZnFe 2O4-rGO (20 wt%) nanostructures under a short time period (∼1 min) of near-infrared (NIR) irradiation (with a laser power of 7.5 W cm-2) resulted in an excellent destruction of the prostate cancer cells, in the presence of a magnetic field (∼1 Tesla) used for localizing the... 

    Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 116 , April , 2014 , pp. 49-54 ; ISSN: 09277765 Pourjavadi, A ; Hosseini, S. H ; Alizadeh, M ; Bennett, C ; Sharif University of Technology
    Abstract
    A novel magnetic nanocarrier with long spacer length and high colloidal stability has been prepared for effective delivery of doxorubicin (DOX). First, poly(amidoamine) (PAMAM) dendrimer was grown up onto the surface of superparamagnetic iron oxide nanoparticles to increase the loading amount of amine groups. Then, terminal amine groups were functionalized by polyethylene glycol dimethylester to increase the spacer length. Then anticancer drug DOX was covalently attached onto the system by hydrazone bond to forms a pH-sensitive nanocarrier. This system is designed to combine the advantage of magnetic targeting, high drug loading capacity, and controlled release  

    Superparamagnetic zinc ferrite spinel-graphene nanostructures for fast wastewater purification

    , Article Carbon ; Vol. 69 , April , 2014 , pp. 230-238 ; ISSN: 00086223 Meidanchi, A ; Akhavan, O ; Sharif University of Technology
    Abstract
    Superparamagnetic ZnFe2O4/reduced graphene oxide (rGO) composites containing ZnFe2O4 nanoparticles (with ∼5-20 nm sizes) attached onto rGO sheets (with ∼1 μm lateral dimensions) were synthesized by hydrothermal reaction method. By increasing the graphene content of the composite from 0 to 40 wt%, the size as well as the number of the ZnFe2O4 nanoparticles decreased and the saturated magnetization of the composites reduced from 10.2 to 1.8 emu/g, resulting in lower responses to external magnetic fields. Concerning this, the time needed for 90% separation of ZnFe2O4/rGO (40 wt%) composite from its solution (2 mg/mL in ethanol) was found 60 min in the presence of an external magnetic field (∼1... 

    A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    , Article Analytica Chimica Acta ; Volume 794 , 2013 , Pages 38-46 ; 00032670 (ISSN) Bagheri, H ; Daliri, R ; Roostaie, A ; Sharif University of Technology
    2013
    Abstract
    A novel Fe3O4-poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample... 

    Facile fabrication and characterization of amino-functionalized Fe 3O4 cluster@SiO2 core/shell nanocomposite spheres

    , Article Materials Research Bulletin ; Volume 48, Issue 6 , 2013 , Pages 2023-2028 ; 00255408 (ISSN) Kalantari, M ; Kazemeini, M ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    We developed a modified straightforward method for the fabrication of uniformly sized silica-coated magnetite clusters core/shell type nanocomposite particles. Proposed simple one-step processing method permits quick production of materials in high yield. The structural, surface, and magnetic characteristics of the nanocomposite particles were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The sphere-shaped particles almost have the average diameter of 120 nm, with a magnetic cluster core of 80 ± 15 nm, and a silica shell of 25 ± 10 nm...