Loading...
Search for: superparamagnetism
0.01 seconds
Total 80 records

    کلیدواژه های تکراریCurcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats

    , Article Biomedicine and Pharmacotherapy ; Volume 108 , 2018 , Pages 1244-1252 ; 07533322 (ISSN) Naserzadeh, P ; Ashrafi Hafez, A ; Abdorahim, M ; Abdollahifar, M. A ; Shabani, R ; Peirovi, H ; Simchi, A ; Ashtari, K ; Sharif University of Technology
    Abstract
    Background: The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. Methods: We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation,... 

    Study on the Performance of Magnetic Nanoparticles in Hyper-thermic Treatment of Cancerous Tumors, by Heating an MRI Apparatus

    , M.Sc. Thesis Sharif University of Technology Payami Golhin, Zahra (Author) ; Outokesh, Mohammad (Supervisor) ; Nourani, Mohammad Reza (Supervisor)
    Abstract
    The aim of this study was to investigate the rate of increase in temperature of a phantom equivalent to body tissue by different groups of magnetic iron nanoparticles in the external magnetic field to kill cancer cells based on the hyperthermia method. To achieve this goal, three groups of dextran magnetic nanoparticles with different properties and reduced iron oxide-graphene oxide magnetic nanoparticles by M-rGO supercritical synthesis method were used. After XRD, FTIR, SEM, FESEM, VSM, TEM characterization tests, these materials were placed in a phantom made of agarose gel and with the same properties, in a magnetic field with fixed characteristics for all groups and during the process of... 

    Study on the Efficiency of Graphene and Graphene Oxide-coated Iron Oxide Nanoparticles in the Treatment of Cancer Cells to Hyperthermia

    , M.Sc. Thesis Sharif University of Technology Azizi Darsara, Fatemeh (Author) ; Otukesh, Mohammad (Supervisor) ; Saligheh Rad, Hamid Reza (Co-Advisor)
    Abstract
    The main methods have been used clinically for cancer treatment are included: surgery, chemotherapy, radiation therapy and hyperthermia. Hyperthermia (heat therapy) treatment method in which by raising the temperature of the tumor it removed. Magnetic hyperthermia is known as a kind of hyperthermia that have been represent appropriate results. In this study, using iron oxide nanoparticle coated with graphene for cancer treatment under a magnetic field of the laser. In the first stage, graphene oxide nanosheets and nanoparticles Magntayt are synthesized by chemical oxidation and co-precipitation, respectively. At the end, the nanoparticles on the substrate of graphene layer is obtained... 

    Synthesis and Characterization of Dextran Based Magnetic Nanogels as a Gene Delivery Vector and Investigating its Gene Therapy Efficiency

    , M.Sc. Thesis Sharif University of Technology Azadpour, Behnam (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Arefian, Ehsan (Supervisor)
    Abstract
    The use of magnetic nanoparticles modified with proper surface agent and the ability of controlling by magnetic field, that can induce colloidal stability, is considered as a vector to transfer DNA plasmid, or pDNA in short, in the field of gene therapy. In thiss research, pH-responsive dextran-based magnetic nanogels (dextMNGs) were synthesized via inverse mini-emulsion method. Fourier transformation infrared spectroscopy (FTIR) showed that magnetite nanoparticles (MNPs) were successfully modified with arginine and had amine terminals. FTIR, also, proved that aldehyded dextran was crosslinked by arginine modified magnetite nanoparticles (RMNPs) via pH sensitive imine bonds. X-ray... 

    Synthesis and Characterization of Hybrid Smart Nanohydrogel Pluronic-Chitosan/Graphene/Magnetic Nanoparticles with Ability of Drug Release to Cure Cancer

    , M.Sc. Thesis Sharif University of Technology Tohidi, Azadeh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    In recent years, many efforts have been made in the field of drug delivery with hydrogel nanoparticles. This class of materials has been at the center of attention in medical science due to their improved physical and biological properties including high amount of water preservation, penetration, bio capampatibility and physical structure similar to outside matrices of tissue. Among various applications in medical sciences, drug delivery based on hydrogels is very attractive. Hydrogels can protect drugs from aggressive environmental factors such as pH and thermal changes, and presence of enzymes. The porosity of hydrogels facilitates drug loading into the gel matrix and provides a... 

    , M.Sc. Thesis Sharif University of Technology Bagheri Mehrabadi, Niloofar (Author) ; Simchi, Abdol Reza (Supervisor) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    The use of magnetic compounds for drug delivery and magnetic imaging has been studied in many studies. The easy use of magnetic particles makes them widespread. By applying a magnetic field, the particles reach the desired position and return to the original state by cutting off the field. The use of these magnetic materials in the nanoscale also adds other benefits, including: convenient and rapid transfer of nanoparticles, rapid repulsion of the kidneys, reducing the risk of overdose, etc. In recent years, the use of quantum dots for the diagnosis and treatment of tumors has attracted much attention. The use of hybrid quantum dots and magnetic nanoparticles can incorporate the desired... 

    Synthesis and Characterization of the Multifunctional Fe3O4@Mn3O4-LCysteine-g-C3N4 QDs System as a Contrast Agent for Dual-Model Magnetic Resonance and Fluorescence Imaging

    , M.Sc. Thesis Sharif University of Technology Moeini, Ali (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Khachatourian, Adrine Malek (Supervisor)
    Abstract
    Cancer is one of the most important problems that affects public health. If this disease is diagnosed quickly in the patient's body, it can be prevented and treated by determining the stage of the disease and establishing a treatment protocol. Magnetic resonance imaging (MRI) and fluorescence imaging (FI) are among the imaging methods. In order to increase the contrast of images, researchers have turned to the synthesis of materials under contrast agents, which improve diagnostic sensitivity. Synthesis of nanoparticles as multi-mode contrast agents can enhance imaging methods. In this research, the synthesis and characterization of the multifunctional Fe3O4-Mn3O4-LCysteine@g-C3N4 QDs system... 

    Synthesis and Characterization of Colloidal Superparamagnetic Iron Oxide and Iron/Iron Oxide Nanoparticles as MRI Contrast Agent

    , Ph.D. Dissertation Sharif University of Technology Masoudi, Afshin (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Seyed Reyhani, Morteza (Supervisor)
    Abstract
    As contrast enhancement agent, two different structures of superparamagnetic nanoparticles were synthesized. Iron oxide nanoparticles were prepared through an alkaline coprecipitation method of Iron (II) and (III) ions. PEG-6000 was used as biocapping material and its effect on particle size, colloidal stability and cytotoxicity was evaluated. On the other hand, novel core/shell structures were produced by NaBH4 reduction process of iron (III) in an aqueous media following by further oxidation by two different methods using (CH3)3NO oxygen transferring agent and exposure to oxygen flow. In both cases, structural examinations were conducted via X-ray diffraction, electron microscopy and... 

    Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles Via Microemulsion (Reverse Micelle) Method as MRI Contrast Agents

    , M.Sc. Thesis Sharif University of Technology Pelaschi, Mohammad Ali (Author) ; Madah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Iron oxide nanoparticles were synthesized using microemulsion technique as MRI contrast agents. Utilization of nanoparticles for biological applications and in this case as MRI contrast agents needs particles to be of small size and also narrow size distribution. For this aim, the effect of several parameters on size and size distribution has been studied. These parameters include water/surfactant ratio, precursor’s concentration and amount of polymer employed to improve nanoparticles colloidal stability. XRD, FE-SEM and TEM results reveal that the synthesized nanoparticles had small size (about 10 nm iron oxide core and 20 nm overall diameter) and possessed narrow size distribution (15-21... 

    Synthesis, Characterization and Surface Modification of Iron Oxide Nanoparticles for Biomedical Applications

    , Ph.D. Dissertation Sharif University of Technology Mahmoudi, Morteza (Author) ; Simchi, Abdolreza (Supervisor) ; Imani, Mohammad (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection, and cell/protein separation. Since the particles with various sizes exhibit different flow rates in the same environment (same capillary size), it is essential to use particles of a desirable size for targeted drug delivery and imaging. Particles of different sizes may be exposed to different viscosities and behave differently, particularly with regard to their velocities as they move through capillaries. In the present work, SPION with different size, purity, shape and... 

    Preparation and Evaluation of Doxorubicin-loaded Fe3O4\Chitosan Magnetic Nanocomposite for Drug Delivery System in Cancer Therapy

    , M.Sc. Thesis Sharif University of Technology Tajeri, Razieh (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Recent drug delivery strategies have attempted to maximize the concentration of chemotherapeutic molecules into the tumors, while minimizing their systemic distribution. Doxorubicin has been widely used for a variety of cancers, successfully producing regression in acute leukaemia, lymphomas, soft-tissue and osteogenic sarcomas, paediatric malignancies and adult solid tumours, in particular breast and lung carcinomas. Common adverse effects of doxorubicin include hair loss, myelosuppression, nausea and vomiting, oral mucositis, oesophagitis, diarrhoea, skin reactions and serious reactions include hypersensitivity reactions, radiation recall, heart damage and liver dysfunction. Chitosan has... 

    Determination of Protein Absorption Profile at the Surface of Biocompatible Superparamagnetic Iron Oxide Nanoparticles using Gel Electrophoresis

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Forough (Author) ; Hormozi Nezhad, Mohammad Reza (Supervisor) ; Mahmoudi, Morteza (Supervisor)
    Abstract
    Superparamagnetic Iron Oxide NPs (SPIONs) because of their multi-task capabilities (e.g. magnetic labeling, cell isolation, hyperthermiaand controlled drug release) have been recognized as one of the most promising NPs for theranosis applications.When NPs come in contact with a biological medium, the surfaces of them are covered by biomolecules (e.g., proteins, natural organic materials, and enzymes). Therefore, what a biological entity, such as cells, tissues, and organs, sees when interacting with NPs is different original pristine surface of the NPs and actually is hard protein corona. Shape of NPs has a great impact on proteins adsorb onto its surface and consequently on the way that... 

    Surface Modification of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs)for Cell Separation

    , M.Sc. Thesis Sharif University of Technology Shirzadeh, Ghazale (Author) ; Maddah Hoseini, Hamid Reza (Supervisor)
    Abstract
    The aim of this project is the surface modification of super para magnetic iron oxide (SPIONs), leading to oriented covalent bonding of antibody(AB) to these nanoparticles (NPs) and improve the efficiency of cell separation at MACS columns. For this purpose, SPIONs synthesized by co-precipitation method, and the stability of colloidal NPs then was provided by coating with Dextran . We used TGA to measure weight percentage of dextran. Some properties like particle size, hydrodynamic diameter, presence of coating and superparamagnetic properties were characterized by XRD (16 nm), FTIR, DLS (73 nm), TEM (20nm) and VSM (≈76/78 emu/g) method, respectively. Then we tried to immobilize AB on NPs... 

    Study of the Effect of Surfactant and Fe Concentration on the Size and Physical Properties of Magnetic Fe-Au Core-Shell Nano Particles, Synthesized Via Reverse Nicelle

    , M.Sc. Thesis Sharif University of Technology Molavi Kakhki, Amin (Author) ; Simchi, Abdolreza (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    The aim of this research is to study the effect of surfactant type and the concentration reactants on the size, shape and magnetic properties of iron-gold core-shell magnetic nanoparticles (NPs) useable for biomedical application. The reverse micelle procedure was employed to synthesize iron NPs using two surfactants of CTAB and SDS. A gold shell with a thickness in the range of 10 to 40 nm was induced by reverse micelle method in order to prevent oxidation of the iron core. The size and morphology of NPs were studied by transition electron microscopy (TEM). It was found that the size of NPs increases by the increasing the reactants concentration while the morphology of the NPs was not... 

    α-Arylation of oxindoles using recyclable metal oxide ferrite nanoparticles: Comparison between the catalytic activities of nickel, cobalt and copper ferrite nanoparticles

    , Article Catalysis Communications ; Volume 75 , 2016 , Pages 37-41 ; 15667367 (ISSN) Matloubi Moghaddam, F ; Tavakoli, G ; Latifi, F ; Saeednia, B ; Sharif University of Technology
    Elsevier 
    Abstract
    Three different spinel metal oxide catalytic systems including NiFe2O4, CuFe2O4 and CoFe2O4 were synthesized using co-precipitation technique and their catalytic activities were compared to each other in α-arylation of oxindole derivatives under the optimized reaction conditions. Both nickel ferrite and copper ferrite magnetic nanoparticles show approximately the same behavior in these reactions but cobalt ferrite ones indicate slightly different properties and were not as good as the other two catalysts. These superparamagnetic catalysts allowed that α-arylation of different types of oxindoles will occur in high yields under mild conditions and at very short times  

    ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells

    , Article Materials Science and Engineering C ; Volume 46 , January , 2015 , Pages 394-399 ; 09284931 (ISSN) Meidanchi, A ; Akhavan, O ; Khoei, S ; Shokri, A. A ; Hajikarimi, Z ; Khansari, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~ 1 min for 2 mg mL- 1 of the nanoparticles in ethanol) by applying an external magnetic field (~ 1 T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high... 

    Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 21 , 2014 , p. 3306-3314 Akhavan, O ; Meidanchi, A ; Ghaderi, E ; Khoei, S ; Sharif University of Technology
    Abstract
    A magneto-photothermal therapy for cancer (in vitro photothermal therapy of prostate cancer cells and in vivo photothermal therapy of human glioblastoma tumors in the presence of an external magnetic field) was developed using superparamagnetic zinc ferrite spinel (ZnFe2O4)-reduced graphene oxide (rGO) nanostructures (with various graphene contents). In vitro application of a low concentration (10 μg mL-1) of the ZnFe 2O4-rGO (20 wt%) nanostructures under a short time period (∼1 min) of near-infrared (NIR) irradiation (with a laser power of 7.5 W cm-2) resulted in an excellent destruction of the prostate cancer cells, in the presence of a magnetic field (∼1 Tesla) used for localizing the... 

    Toward epileptic brain region detection based on magnetic nanoparticle patterning

    , Article Sensors (Switzerland) ; Volume 15, Issue 9 , September , 2015 , Pages 24409-24427 ; 14248220 (ISSN) Pedram, M. Z ; Shamloo, A ; Alasty, A ; Ghafar Zadeh, E ; Sharif University of Technology
    MDPI AG  2015
    Abstract
    Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs). The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and... 

    The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent

    , Article International Journal of Pharmaceutics ; Volume 433, Issue 1-2 , 2012 , Pages 129-141 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Shokrgozar, M. A ; Ahmadi, R ; Oghabian, M. A ; Sharif University of Technology
    2012
    Abstract
    Superparamganetic iron oxide-based contrast agents in magnetic resonance imaging (MRI) have offered new possibility for early detection of lymph nodes and their metastases. According to important role of nanoparticle size in biodistribution, magnetite nanoparticles coated with different polyethylene glycol (PEG) concentrations up to 10/1 PEG/iron oxide weight ratio in an ex situ manner. To predict the PEG-coated nanoparticle behavior in biological media, such as blood stream or tissue, colloidal stability evaluation was performed to estimate the coating endurance in different conditions. Accordingly, optical absorbance measurements were conducted in solutions with different values of pH and... 

    Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol)

    , Article Thin Solid Films ; Volume 518, Issue 15 , 2010 , Pages 4281-4289 ; 00406090 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Stroeve, P ; Sohrabi, A ; Sharif University of Technology
    2010
    Abstract
    Magnetite (Fe3O4) nanostructures with different morphologies including uniform nanoparticles, magnetic beads and nanorods were synthesized via a co-precipitation method. The synthesis process was performed at various temperatures in the presence of polyvinyl alcohol (PVA) at different concentrations. It is shown that small amounts of PVA act as a template in hot water (70 °C), leading to the oriented growth of Fe3O4 nanorods, which was confirmed by selected area electron diffraction. Individually coated magnetite nanoparticles and magnetic beads were formed at a relatively lower temperature of 30 °C in the folded polymer molecules due to the thermo-physical properties of PVA. When a moderate...