Loading...
Search for: thermal-effect
0.012 seconds
Total 105 records

    Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 1 , 2017 ; 09478396 (ISSN) Azimi, M ; Mirjavadi, S. S ; Shafiei, N ; Hamouda, A. M. S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton’s principle. The small-scale effect has been considered using the nonlocal Eringen’s elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are... 

    Minimum miscibility pressure of CO2 and crude oil during CO2 injection in the reservoir

    , Article Journal of Supercritical Fluids ; Volume 127 , 2017 , Pages 121-128 ; 08968446 (ISSN) Lashkarbolooki, M ; Eftekhari, M. J ; Najimi, S ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Recently, carbon dioxide (CO2) flooding into depleted reservoirs regardless of miscible or immiscible displacement is widely investigated not only to improve oil recovery but also to reduce the greenhouse effect of this gas produced by numbers of industries in the globe. In the light of this fact, in the first stage of this investigation, the minimum miscibility pressure (MMP) of CO2 and light crude oil (API° = 35) with low asphaltene content was determined at temperatures of 30, 50 and 80 °C using vanishing interfacial tension (VIT) method. The obtained results demonstrated that the MMP of the studied system is almost linear function of temperature with slope of 0.15 MPa/K. The interesting... 

    Effect of recycle gas on activity and selectivity of Co-Ru/Al2O3 catalyst in fischer- Tropsch synthesis

    , Article World Academy of Science, Engineering and Technology ; Volume 37 , 2009 , Pages 587-591 ; 2010376X (ISSN) Rohani, A. A ; Hatami, B ; Jokar, L ; Khorasheh, F ; Safekordi, A. A ; Sharif University of Technology
    2009
    Abstract
    In industrial scale of Gas to Liquid (GTL) process in Fischer-Tropsch (FT) synthesis, a part of reactor outlet gases such as CO2 and CH4 as side reaction products, is usually recycled. In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol. % of feed) to the feed stream. The effect of temperature and feed flow rate, are also inspected. The results show that low amounts of CO2 in the feed stream, doesn't change the catalyst activity significantly but increasing the amount of CO2 (more than 10 vol. %) cause the CO conversion to decrease and the selectivity of heavy components to increase.... 

    Various effects of reformer gas enrichment on natural-gas, iso-octane and normal-heptane HCCI combustion using artificial inert species method

    , Article Energy Conversion and Management ; Volume 159 , March , 2018 , Pages 7-19 ; 01968904 (ISSN) Reyhanian, M ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Reformer gas (syngas) addition to main fuel is a practical solution for combustion timing control in HCCI engines. This study emphasizes the understanding of various effects of reformer gas (RG) addition, with composition of 75%vol H2 and 25%vol CO, in HCCI combustion by developing an artificial inert species method and using a detailed chemical kinetics multi-zone model. Three fuels (iso-octane, n-heptane, and natural gas) with different autoignition characteristics were used in this study. The developed multi-zone model was validated for mentioned fuels at various percentages of RG using six experimental cases of a single-cylinder CFR engine. The results showed that increasing reformer gas... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 6 , 2018 , Pages 467-480 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S ; Shafiei, N ; Salem Hamouda, A. M ; Davari, E ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law... 

    Thermal analysis of laser hardening for different moving patterns

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 22, Issue 2 , 2009 , Pages 169-180 ; 17281431 (ISSN) Farrahi, G. H ; Sistaninia, M ; Sharif University of Technology
    Materials and Energy Research Center  2009
    Abstract
    Transient thermal field in laser surface hardening treatment of medium carbon steel was analyzed by employing both three-dimensional analytical model and finite element model. In finite element model the laser beam was considered as a moving plane heat flux to establish the temperature rise distribution in the work-piece, while in analytical model laser beam was considered as an internal heat source. The numerical results were compared with the analytical results. In laser heat treatment of steel some methods are used to produce a wider and nearly uniform average irradiance profile. It may be achieved by rotating the beam optically, thereby producing an overlapping spiral track, or by... 

    Micro resonator nonlinear dynamics considering intrinsic properties

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 121-129 ; 10263098 (ISSN) Sayyaadi, H ; Tadayon, M. A ; Eftekharian, A. A ; Sharif University of Technology
    2009
    Abstract
    One of the most important phenomena to affect the motion behaviour of Micro Resonators is their thermal dependency. This has recently received the attention of researchers widely. A thermal phenomenon has two main effects, the first is damping, due to internal friction, and the second is softening, due to Young's modulus-temperature relationship. In this research work, some theoretical and experimental reported results are used to make a proper model, including thermal phenomena. Two Lorentzian functions are used to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, considering capacitor... 

    Thermal-aware Accelerator Placement and Task Assignment for Energy Improvement in Data Center

    , M.Sc. Thesis Sharif University of Technology Kazemi Abharian, Sanaz (Author) ; Goudarzi, Maziar (Supervisor)
    Abstract
    With the proliferation of data centers, their ever-growing energy consumption has gained lots of attention from both academy and industry . Two primary parts that use majority of energy in data centers are IT equipment and cooling system or Computing Room Air Conditioning (CRAC) unit. Energy consumption of cooling system strongly relies on thermal performance of data center. Therefore, applying thermal management techniques for decreasing energy consumption of CRAC is a common practice. Moreover, the energy consumption of IT equipment affects the energy consumption of CRAC directly. Demand for more computing resources in data centers and their physical limits has, motivated the use of FPGAs ... 

    Effects of interface conditions on thermo-mechanical fields of multi-phase nano-fibers/particles

    , Article Journal of Thermal Stresses ; Volume 32, Issue 11 , 2009 , Pages 1166-1180 ; 01495739 (ISSN) Hatami Marbini, H ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    The stress field of a multi-phase spherical/cylindrical inhomogeneity with arbitrary interface bonding conditions, subjected to both a uniform temperature change and a uniform hydrostatic tension, is presented. Imperfect bonding conditions are modeled using linear spring model and coherent interface model. In nanosize inhomogeneities, since the surface energy is not negligible with respect to the bulk energy, the effect of surface stresses is incorporated into the formulation. Accurate estimates for the thermal stresses of a functionally graded coated inhomogeneity with perfect and /~or imperfect interfaces are given. The influence of coating stiffness, coating thickness and interface... 

    Influence of deformation during T10 treatment on microstructure/hardness/ electrical conductivity of Cu-Cr alloy produced in nonprotected atmosphere

    , Article Materials Science and Technology ; Volume 25, Issue 10 , 2009 , Pages 1283-1288 ; 02670836 (ISSN) Hosseini, E ; Habibollahzadeh, A ; Erfanmanesh, M ; Mostajabodave, H ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Cu-1·5Cr alloy was successfully produced by a new method, composed of alloying via melting in a non-protected atmosphere followed by rapid cooling in a water cooled mould. The effects of deformation magnitude during T10 treatment on microstructure, electrical conductivity and hardness of alloy were also investigated. The results showed that cold work before age hardening treatment, especially in the range of 20-40% deformation, provides optimum electrical and mechanical properties, i.e. electrical conductivity of 70-85% International Annealed Copper Standard (IACS) and hardness of 160-180 HB. In addition, the cold work promotes a useful anisotropy in electrical and mechanical properties of... 

    Effect of rare earth elements addition and T6 heat treatment on creep properties of Mg-Al-Zn alloy

    , Article Magnesium Technology 2009, San Francisco, CA, 15 February 2009 through 19 February 2009 ; 2009 , Pages 483-488 ; 15454150 (ISSN); 9780873397308 (ISBN) Meshinchi Asl, K ; Khomamizadeh, F ; Magnesium Committee of the Light Metals Division; Minerals, Metals and Materials Society, TMS ; Sharif University of Technology
    2009
    Abstract
    This paper focuses on creep properties of AZ91-RE and heat treated AZ91 magnesium alloy. Influence of heat treatment and rare earths addition on microstructure and mechanical properties were investigated. Creep behavior is dependent on the stability of the near grain boundary microstructure and is improved by rare earth addition. The results show that sliding of grain boundaries has an important part in the deformation mechanism in AZ91 alloy at elevated temperatures which is greatly suppressed by the rare earths addition  

    Effect of heating profile on desorption curve in temperature programmed desorption analysis: Case study of acid sites distribution of SAPO-34

    , Article Journal of Porous Materials ; Volume 16, Issue 5 , 2009 , Pages 599-603 ; 13802224 (ISSN) Izadbakhsh, A ; Farhadi, F ; Khorasheh, F ; Yan, Z. F ; Sharif University of Technology
    2009
    Abstract
    Comparison of the traditional linear heating method of TPD with an original stepwise heating scheme was reported for the first time. Stepwise heating TPD was carried out by keeping the temperature constant as soon as ammonia desorption signal rises until the signal returns to the baseline. More ammonia desorption peaks on a SAPO-34 catalyst were identified using TPD with stepwise heating. The effect of temperature ramp on desorption peak broadening in TPD curve was also addressed. The more distinct ammonia desorption peaks in stepwise TPD indicates that ammonia adsorbs in about five or six different ways on SAPO-34, and attribution of different adsorptions may be explained considering some... 

    Nonlinear transient heat transfer and thermoelastic analysis of thick-walled FGM cylinder with temperature-dependent material properties using hermitian transfinite element

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 10 , 2009 , Pages 2635-2644 ; 1738494X (ISSN) Azadi, M ; Azadi, M ; Sharif University of Technology
    2009
    Abstract
    Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature-dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present... 

    γ' Precipitate dissolution during heat treatment of nimonic 115 superalloy

    , Article Materials and Manufacturing Processes ; Volume 24, Issue 5 , 2009 , Pages 559-563 ; 10426914 (ISSN) Shahriari, D ; Sadeghi, M. H ; Akbarzadeh, A ; Sharif University of Technology
    2009
    Abstract
    In precipitation hardenable materials, it is desirable to determine the precipitate dissolution temperature for homogenizing the microstructure by controlling the size and distribution of the precipitates. In this research, differential thermal analysis, dilatometry technique, heat treatments followed by microstructure evaluation were used to determine the -γ' dissolution temperature of Nimonic 115. It is assumed that the variation of enthalpy is governed by the changes in y volume fraction and γ concentration with time and temperature, and any contribution of the coarsening of γ' is neglected. The values obtained for the solvus temperature of γ precipitates by the three methods are all in... 

    Chemical corrosion and gamma-ray attenuation properties of Zr and Ti containing lead silicate glasses

    , Article Journal of Nuclear Materials ; Volume 385, Issue 3 , 2009 , Pages 527-532 ; 00223115 (ISSN) Rahimi, R. A ; Raisali, G ; Sadrnezhaad, K ; Alipour, A ; Sharif University of Technology
    2009
    Abstract
    Lead silicate glasses (LSGs) have high gamma-ray attenuation but low chemical durability properties. In this work, LSGs with (55.5-68.5 wt%) PbO content containing ZrO2 and TiO2 additions were produced. The chemical corrosion of various produced LSGs in 0.5 N HNO3 aqueous solution and determination of their gamma-ray attenuation coefficients for 60Co and 137Cs sources were investigated. The weight loss measurements, the SEM micrographs, the EDS analysis of the sample surfaces and the ICP analysis of solution were used to characterize the dissolution process. The effects of PbO content, ZrO2 and TiO2 additives on chemical corrosion, and also the effect of PbO on gamma-ray attenuation... 

    Kinetics investigation of the photocatalytic degradation of acid blue 92 in aqueous solution using nanocrystalline TiO2 prepared in an ionic liquid

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 34, Issue 1 , 2009 , Pages 55-76 ; 14686783 (ISSN) Ghasemi, S ; Rahimnejad, S ; Rahman Setayesh, S ; Hosseini, M ; Gholami, M. R ; Sharif University of Technology
    2009
    Abstract
    TiO2 nanoparticles were prepared by the sol - gel process using 2-hydroxylethy- lammonium formate as an ionic liquid. Nanoparticles were crystallized at various temperatures (300-700°C). The products were characterized using X-ray diffraction (XRD), nitrogen adsorption - desorption isotherms and scanning electron microscopy (SEM) techniques. It was found that the resulting TiO2 nanoparticles had good thermal stability either to resist collapse or the anatase-to-rutile phase transformation during heat treatment. The photocatalytic activity of the nanocrystalline TiO2 was evaluated by the degradation of Acid Blue 92 (AB92) which is commonly used as a textile dye. The results showed that the... 

    Thermal Relaxation Time Of Healthy and Cancerous Tissue In Pulsed Laser Using Monte Carlo Simulation

    , M.Sc. Thesis Sharif University of Technology Khaze, Mehran (Author) ; Amjadi, Ahmad (Supervisor)
    Abstract
    Thermal relaxation time is the time when maximum temperature of a particle get to 1/e of it’s initial value. The destruction of a tissue depends to this important parameter. This parameter has studied by Monte Carlo simulation of pulsed laser in to environment as healthy and cancerous tissue. The main goal of this method is providing proper temperature in a special area so that minimize thermal destruction around that area. In this thesis, temperature distribution of tissue that is caused by pulsed laser, has solved by new method;in this new method the pulse duration uses for Monte Carlo simulation. Also using the solution of radiation transfer equation by Discretes Ordinate Method, new... 

    Mechanism of water permeation through modified carbon nanotubes as a model for peptide nanotube channels

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 926-941 ; 14757435 (ISSN) Alizadeh, A ; Parsafar, G. A ; Ejtehadi, M. R ; Sharif University of Technology
    2009
    Abstract
    It is of interest to explore transfer of fluid through nanopores because of widespread applications for such systems. Carbon Nanotubes (CNTs) with their exceptional properties are the best candidates as building blocks for nanostructures. Water transfer in lots of biological systems acts as an important role for keeping the tissue working properly. Peptide nanotube is one of the best biological channels which was proposed recently. While the mechanism of water permeation through channels is very complex, however, investigations such as effect of charge distributions and temperature on water permeation could shed light on the determinants of water and proton conduction rates in biol ogical... 

    Optimization of mechanical properties of a micro alloyed steel

    , Article Materials and Design ; Volume 30, Issue 6 , 2009 , Pages 2167-2172 ; 02641275 (ISSN) Rasouli, D ; KhamenehAsl, Sh ; Akbarzadeh, A ; Daneshi, G. H ; Sharif University of Technology
    2009
    Abstract
    In this work, the effect of hot deformation temperature on microstructure and mechanical properties of micro alloyed steel was studied. The results indicated that by decreasing the deformation temperature final microstructure is refined and the volume fraction of grain boundary ferrite is increased and some pearlite is produced. Therefore both the yield strength and ultimate tensile strength is increased, while the toughness is preserved in comparison to a ferritic-pearlitic microstructure. Also a model was developed to relate the deformation condition to the volume fraction of acicular ferrite at mixed microstructure. © 2008 Elsevier Ltd. All rights reserved  

    Study of microstructure and dielectric properties of PMN-PZT ceramics via a mixed powder method including sol-gel precursor

    , Article Journal of Alloys and Compounds ; Volume 476, Issue 1-2 , 2009 , Pages 791-796 ; 09258388 (ISSN) Moetakef, P ; Nemati, Z. A ; Sharif University of Technology
    2009
    Abstract
    An attempt to synthesize pyrochlore free (x)PMN-(1 - x)PZT ceramics (where x is 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) by a mixed powder method was made. In this work, a sol-gel prepared PZT powder was mixed with the mixture of milled PbO, MgO and Nb2O5, and sintered in a two step sintering process. The produced samples with high PZT content showed low densities due to the low compaction ratio of PZT powder. The dielectric properties of PZT-rich and PMN-rich materials were high (with dielectric constant of about 19,000 and 33,000 for PZT-rich and PMN-rich ceramics, respectively) while the other samples exhibited low dielectric properties. Also, the effect of combining PMN with PZT on Curie...