Loading...
Search for: tio2
0.012 seconds
Total 200 records

    Ag/TiO2-nanotube plates coated with reduced graphene oxide as photocatalysts

    , Article Surface and Coatings Technology ; Volume 288 , 2016 , Pages 144-150 ; 02578972 (ISSN) Faraji, M ; Mohaghegh, N ; Sharif University of Technology
    Elsevier 
    Abstract
    RGO/Ag/TiO2-nanotubes/Ti plates with high photocatalytic activity were fabricated via electrochemical reduction of graphene oxide on Ag/TiO2-nanotubes. The loading of silver nanoparticles was carried out by electroless reduction of Ag1+ onto TiO2 nanotubes previously formed by anodizing titanium. Microstructure studies show that reduced graphene oxide (RGO) layers having high surface area have been deposited on the as-prepared Ag/TiO2-nanotubes, where nanoparticles of Ag had grown on the walls of TiO2-nanotubes. The results of photocatalytic experiments demonstrate that the RGO/Ag/TiO2-nanotubes/Ti plate exhibits significantly enhanced photocatalytic activity for the photocatalytic... 

    Controlling the properties of TiO2 nanoparticles generated by nanosecond laser ablation in liquid solution

    , Article Laser Physics ; Volume 28, Issue 8 , 2018 ; 1054660X (ISSN) Pashazadeh, M ; Irani, E ; Golzan, M. M ; Sadighi Bonabi, R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Laser ablation of titanium target in distilled water for synthesis of colloidal nanoparticles is studied both experimentally and theoretically. The effects of laser parameters such as wavelength, pulse energy, fluence and shot numbers on the ablation rate and size properties of colloidal nanoparticles are investigated. The experimental approach addresses the interesting issue for finding the optimal main experimental parameters of laser ablation. The theoretical thermal model of nanosecond pulsed laser ablation is developed to visualize the evolution of temperature distributions and ablation depth. The simulation result of ablation depth has been compared with the experimental result... 

    Two-dimensional clustering of nanoparticles on the surface of cellulose fibers

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 28 , 2009 , Pages 12022-12027 ; 19327447 (ISSN) Khajeh Aminian, M ; Taghavinia, N ; Irajizad, A ; Mahdavi, M ; Ye, J ; Chavoshi, M ; Vashaei, Z ; Sharif University of Technology
    2009
    Abstract
    Density of surface charges of cellulose fibers and -potential of TiO2 nanoparticles in the solution were measured and controlled by pH. The adsorption and clustering of TiO2 nanoparticles on the surface of cellulose fibers were studied using scanning electron microscopy (SEM) and a scale in different situations of repulsion and attraction between the particles and surface. The experiments show formation of two-dimensional clusters of nanoparticles on the surface. Weight measurement of the adsorbed particles and clusters via the adsorption time results in that there are three stages containing nucleation, two-dimensional growth and saturation for clustering of nanoparticles on the surface.... 

    Air quenching as a reliable technique to obtain colossal dielectric constant with low loss in (In, Nb)-co doped TiO2

    , Article Materials Letters ; Volume 267 , May , 2020 Maleki Shahraki, M ; Mahmoudi, P ; Karimi, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In this research, for the first time, the effect of air quenching on the microstructural and electrical properties of (In, Nb) co-doped TiO2 was investigated. The FE-SEM images showed that the air quenching has no effect on microstructure of co-doped TiO2. However, air quenching affected the electrical properties so that the dielectric constant in the frequency of 1 kHz at room temperature sharply enhanced from 21*103 to 26*104 and the dielectric loss surprisingly decreased from 0.6 to 0.1. This incredible improvement in the dielectric properties is attributed to the electron-pined defect dipoles which has been activated through air quenching. © 2020 Elsevier B.V  

    Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 30 , 2020 , Pages 15380-15389 Sadeghian, Z ; Hadidi, M. R ; Salehzadeh, D ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present work, G-TiO2 and G-ODA-TiO2 hybrids were prepared by concurrent surface functionalization and reducing of graphene oxide (GO) using octadecylamine (ODA). The G-TiO2 and G-ODA-TiO2 powders were deposited on the copper surface by electrophoretic deposition (EPD) technique. The wettability of coatings revealed the preferable hydrophobic characteristic of G-ODA-TiO2 compared to G-TiO2 and bare copper with water contact angles of 130°, 101°, and 87°, respectively. The anti-corrosion performance of specimens in a 0.5 M H2SO4 solution was appraised by the potentiodynamic polarization (Tafel analysis), which clearly showed that G-TiO2 and G-ODA-TiO2 coatings can act as a great barrier... 

    Intrinsically Ru-doped suboxide TiO2nanotubes for enhanced photoelectrocatalytic H2generation

    , Article Journal of Physical Chemistry C ; Volume 125, Issue 11 , 2021 , Pages 6116-6127 ; 19327447 (ISSN) Khorashadizade, E ; Mohajernia, S ; Hejazi, S ; Mehdipour, H ; Naseri, N ; Moradlou, O ; Moshfegh, A. Z ; Schmuki, P ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    In the present research, we investigate the synergistic effects of Ru-doping and Ar/H2 reduction treatment on the photoelectrochemical water splitting performance and hydrogen evolution rate of TiO2 nanotube array photoelectrodes. The Ti-Ru alloy with 0.2 at. % Ru was used to grow anodic self-organized Ru-doped TiO2 nanotube layers. An ideal synergy between Ar/H2 reduction treatment and Ru-doping results in the extended absorption toward the visible light region and improved photoelectrocatalytic activity. The black Ru-doped TiO2-x photoanode's water splitting rate improves remarkably (∼ninefold) compared to the black TiO2-x sample (∼twofold). Moreover, the black Ru-doped TiO2-x photoanode... 

    Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 581 , 2019 ; 09277757 (ISSN) Esfandyari Bayat, A ; Shams, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In recent decades, utilizing of water-based muds (WBMs) in drilling oil and gas wells is ever increasing comparing to oil-based muds and synthetic-based muds due to the lower environmental issues. However, the main drawbacks with WBMs are rheological properties inefficiency and shale swelling which have caused attentions turn to improvement of WBMs’ rheological properties. In this study, the effects of various nanoparticles (NPs) namely titanium dioxide (TiO2), silicon dioxide (SiO2), and zinc oxide (ZnO) on improving rheological properties and shale recovery rate of a WBM sample at two temperatures (25 and 50 °C) were investigated. The concentrations of NPs in the base mud were set at 0.01,... 

    Laser irradiation for controlling size of TiO2-Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide

    , Article Water Science and Technology ; Volume 80, Issue 5 , 2019 , Pages 864-873 ; 02731223 (ISSN) Abdollah, F ; Borghei, S. M ; Moniri, E ; Kimiagar, S ; Panahi, H. A ; Sharif University of Technology
    IWA Publishing  2019
    Abstract
    This study focused on the synthesis of TiO2-Zeolite nanocomposite through a sol-gel approach. The decrease in the size of the nanocomposite is considered a primary parameter to improve photocatalytic activity. In this regard, fabricated samples were exposed to laser irradiation (532 nm) for four different time intervals in order to investigate the size variation of the nanocomposite. FTIR, UV-Vis, XRD, DLS, SEM and EDX analyses were applied to characterize and determine the size of the products. An optimized nanocomposite sample, in term of the particle size, was used for photodegradation of 2,4-D herbicide from aqueous solution. Photodegradation was carried out under UV irradiation (12 W)... 

    Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO 2 -rGO nanocomposite on 316L stainless steel substrate

    , Article Ceramics International ; Volume 45, Issue 11 , 2019 , Pages 13747-13760 ; 02728842 (ISSN) Azadeh, M ; Parvizy, S ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    TiO 2 -rGO nanocomposite coatings were obtained by electrophoretic deposition (EPD) technique of TiO 2 nanoparticles and graphene oxide (GO) on stainless steel substrate. First, GO particles were synthesized using a modified Hummers' method. GO was reduced electrochemically to form a coating in the presence of nano-sized TiO 2 particles. The influences of different parameters such as GO concentration, coupling co-electro-deposition parameters (electrophoretic duration and voltage) on thickness, surface morphology and, corrosion behavior of the as-synthesized TiO 2 -rGO nanocomposite coatings were systematically surveyed. The morphology and microstructure were investigated by field emission... 

    Effects of Ti-based catalysts on hydrogen desorption kinetics of nanostructured magnesium hydride

    , Article International Journal of Hydrogen Energy ; Volume 39, Issue 36 , December , 2014 , Pages 21007–21014 ; ISSN: 03603199 Daryani, M ; Simchi, A ; Sadati, M ; Hosseini, H. M ; Targholizadeh, H ; Khakbiz, M ; Sharif University of Technology
    Abstract
    In the present work, the synergetic effect of Ti-based catalysts (TiH2 and TiO2 particles) on hydrogen desorption kinetics of nanostructured magnesium hydride was investigated. Nanostructured 84mol% MgH2-10%mol TiH2-6%mol TiO2 nanocomposite powder was prepared by high-energy ball milling and subjected to thermal analyses. Evaluation of the absorption/desorption properties revealed that the addition of the Ti-based catalysts significantly improved the hydrogen storage performance of MgH2. A decrease in the decomposition temperature (as high as 100°C) was attained after co-milling of MgH2 with the Ti-based catalysts. Meanwhile, solid-state chemical reactions between MgH2 and TiO2 nanoparticles... 

    Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol-gel technique

    , Article Ceramics International ; Vol. 40, Issue 3 , 2014 , pp. 4193-4201 ; ISSN: 02728842 Naghibi, S ; Faghihi Sani, M. A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    TiO2 nanoparticles were synthesized by hydrothermal assisted sol-gel technique. The preparation parameters including pH value, the amount of water, titanium tetra isopropoxide content, temperature and time of hydrothermal process were investigated by Taguchi statistical experiments to determine the influence of synthesizing variables on the optimal conditions and to realize the highest degree of crystallinity or smallest crystallite size. X-ray diffraction (XRD) analysis and direct band gap energy (Eg) values, measured via diffuse reflectance spectra (DRS), proved that all the samples consist of anatase as a unique phase. Transmission electron microscopy (TEM) and specific surface area... 

    Efficient bio-nano hybrid solar cells via purple membrane as sensitizer

    , Article BioNanoScience ; Vol. 4, issue. 1 , 2014 , pp. 71-77 ; ISSN: 21911630 Janfaza, S ; Molaeirad, A ; Mohamadpour, R ; Khayati, M ; Mehrvand, J ; Sharif University of Technology
    Abstract
    Bacteriorhodopsin is a heptahelical protein found in the purple membrane of Halobacterium salinarum. The performance of bacteriorhodopsin was evaluated as a sensitizer in dye-sensitized solar cells (DSSCs). Bacteriorhodopsin was efficiently immobilized on the titanium dioxide nanoparticles and then tested for its ability to convert solar radiation to electricity. The photovoltaic performance of DSSC based on the bacteriorhodopsin sensitizer has been examined. Under AM1.5 irradiation, a short-circuit current of 0.28 mA cm−2, open-circuit voltages of 0.51 V, fill factor of 0.62, and an overall energy conversion efficiency of 0.09 % are achieved employing platinum as a counter electrode. Carbon... 

    Controlling electron injection and electron transport of dye-sensitized solar cells aided by incorporating CNTs into a Cr-doped TiO2 photoanode

    , Article Electrochimica Acta ; Volume 111 , 2013 , Pages 921-929 ; 00134686 (ISSN) Massihi, N ; Mohammadi, M. R ; Bakhshayesh, A. M ; Abdi Jalebi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work, we focused on simultaneously control electron injection and electron transport, in dye-sensitized solar cells (DSSCs), aided by introducing Cr3+ and CNTs into a TiO2 photoanode, respectively. X-ray photoelectron spectroscopy (XPS) revealed that, Cr 3+ and CNTs were successfully incorporated into the TiO2 lattice without forming secondary phases. X-ray diffraction (XRD) analysis showed that Cr introduction has perfectly balanced the amount of anatase and rutile phases in order to accomplish a more efficient cell. Field emission scanning electron microscope (FE-SEM) images showed deposited films to have a porous morphology composed of nanoparticles and TiO2 nanoparticles... 

    The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 7343-7353 ; 02728842 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO 2 nanoparticles had average crystallite size in the range 21-39 nm, whereas TiO2 nanowires showed diameter in the range 20-50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a... 

    Colloidal stability of dextran and dextran/poly ethylene glycol coated TiO2 nanoparticles by hydrothermal assisted sol-gel method

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 8377-8384 ; 02728842 (ISSN) Naghibi, S ; Madaah Hosseini, H. R ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Colloidal stability of dextran (Dex) and Dex/poly ethylene glycol (PEG) coated TiO2 nanoparticles (NPs) were investigated. The particles were successfully synthesized by a hydrothermal assisted sol-gel technique. The results of Ultraviolet-visible (UV-vis) spectrophotometry showed that Dex and PEG additions during hydrothermal process (HTP) led to the formation of long-term (more than 60 days) stable colloids, while the addition of dispersants after HTP did not have a significant impact on the colloidal stability of NPs. X-ray diffraction (XRD) and selected area electron diffraction (SAED) analyses proved that PEG and/or Dex coated NPs had less crystallinity than the plain TiO2. Fourier... 

    Improved efficiency of dye-sensitized solar cells by design of a proper double layer photoanode electrodes composed of Cr-doped TiO2 transparent and light scattering layers

    , Article Journal of Sol-Gel Science and Technology ; Volume 67, Issue 1 , 2013 , Pages 77-87 ; 09280707 (ISSN) Mohammadi, M. R ; Bakhshayesh, A. M ; Sadri, F ; Masroor, M ; Sharif University of Technology
    2013
    Abstract
    A new strategy for enhancing the efficiency of TiO2 dye-sensitized solar cells (DSSCs) by design of a new double layer film doped with Cr ions, with various morphologies, is reported. X-ray diffraction and field emission scanning electron microscope (FE-SEM) analyses revealed that the synthesized nanoparticles had uniform and nanometer grains with different phase compositions and average crystallite size in the range of 10-12 nm depending upon Cr atomic percentage. UV-vis absorption showed that Cr introduction enhanced the visible light absorption of TiO2 nanoparticles by shifting the absorption onset to visible light region. Furthermore, the band gap energy of nanoparticles decreased with... 

    Fabrication of nanoporous nickel oxide by de-zincification of Zn-Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors

    , Article Electrochimica Acta ; Volume 100 , 2013 , Pages 133-139 ; 00134686 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    NiO-ZnO/TiO2NTs electrodes were synthesized by the electrodeposition of Zn-Ni onto TiO2 nanotubes, dealloying in a concentrated alkaline solution and finally calcination of the resulting Zn(OH)2-Ni(OH)2/TiO2NTs at 300 C. Morphology of the electrodeposited nanostructures was studied using scanning electron microscopy (SEM) while their electrochemical characterizations were carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge procedures. The SEM analysis revealed the nanoporous/cracked structures of the NiO-ZnO/TiO2NTs obtained at the electroplating time of 20 min. The EIS studies showed that nanoporous/cracked structures of... 

    Synthesis and characterization of TiO2-graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants

    , Article Applied Catalysis A: General ; Volume 462-463 , 2013 , Pages 82-90 ; 0926860X (ISSN) Ghasemi, S ; Esfandiar, A ; Rahman Setayesh, S ; Habibi Yangjeh, A ; Iraji Zad, A ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    TiO2-graphene (TiO2-GR) nanocomposites were synthesized using photocatalytic reduction method. TiO2-GR nanocomposites were thereafter doped with noble metals (Pt and Pd) by chemical reduction of the corresponding cations. The samples were characterized by different techniques. The addition of GR to TiO2 decreases the crystalline size of TiO2 due to the homogeneous dispersion of the TiO2 nanoparticles on GR sheets and prevention of coagulation of TiO2 nanoparticles during synthesis process. In addition, the surface area of TiO2 was increased by addition of GR and deposition of noble metals which helps to prevent agglomeration of graphene sheets and TiO 2 nanoparticles. Red shifts to the... 

    Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor

    , Article Journal of Electroanalytical Chemistry ; Volume 691 , 2013 , Pages 51-56 ; 15726657 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    PANI/Pd/TiO2NTs electrodes with highly porous structures and good capacitive characteristics were prepared by electrodeposition of polyaniline on palladium nanoparticles loaded TiO2 nanotubes. The loading of small palladium nanoparticles was carried out by sonochemical reduction of Pd+2 onto TiO2NTs and affected the ordered growth of PANI, reducing the charge transfer resistance and increasing surface area of PANI. The specific capacitance and the stability of electrode showed improvements. The results illustrated that the specific capacitance of these electrodes was around 1060 F g-1 in 1.0 M H2SO4 electrolyte as measured at a constant current of 2.0 A g-1, whereas it was 210 F g-1 for the... 

    Room temperature synthesis of highly crystalline TiO2 nanoparticles

    , Article Materials Letters ; Volume 92 , February , 2013 , Pages 287-290 ; 0167577X (ISSN) Sasani Ghamsari, M ; Radiman, S ; Azmi Abdul Hamid, M ; Mahshid, S ; Rahmani, S ; Sharif University of Technology
    2013
    Abstract
    Hydrolysis of titanium isopropoxide alcoholic solution has been used to prepare the crystallized TiO2 nanoparticles at low temperature. Concentration ratio was used to control the pathway of sol-gel process and change the physical characteristics of TiO2 nanopowders. The crystallinity, morphology and size of aged TiO2 nanopowders were studied by X-ray diffraction and Scanning Electron Microscopy (SEM). FTIR and, Thermo-Gravimetric (TG) analysis were used to identify the functional groups and thermal behavior of prepared samples. Experimental results have shown that high crystalline TiO2 nanomaterial with anatase polymorph can be obtained at room temperature. It has been found that the...