Loading...
Search for: tissue-engineering
0.013 seconds
Total 272 records

    The Fabrication of Porous Scaffolds of Polyvinyl Chloride/Polyethylene Glycol and Nano Diamonds Using Gamma Radiation for Medical Applications

    , M.Sc. Thesis Sharif University of Technology Jabbar, Ali (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Today, tissue engineering research is expanding to a large extent, so tissue engineering has the ability to build artificial organs and tissues. In this project, we have used two polymers of polyethylene glycol and polyvinyl chloride, which are used for network irradiation. After irradiation, these polymers were made by drying the freewheeling porous scaffolds and the effect of different parameters on the structure of these scaffolds was investigated. To investigate the effect of different factors on gelation, swelling, tensile test, degradability and finally the conditions of fibroplast cell growth on scaffolds were investigated. The results of the gel test showed that the gel was higher... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    Fabrication of a Multi-Layered Scaffold to Be Used in Dermal Wound Healing

    , M.Sc. Thesis Sharif University of Technology Kamali, Ali (Author) ; Shamloo, Amir (Supervisor) ; Asghari, Mohsen (Co-Advisor)
    Abstract
    Wound healing by engineered scaffolds is a new step in bio-technology and medical studies in recent years. The goal of the current study is to propose a novel structure for a tissue-engineered scaffold to be used in wound healing. Influenced from the multi-layered structure of natural human skin, the fabricated scaffold consists of two layers to maximize similarity with natural skin. This product is comprised of an electrospun layer made of polycaprolactone and polyvinyl alcohol and a hydrogel layer made of chitosan and gelatin. In order to form a porous medium in the hydrogel layer, freeze-gelation was used instead of freeze drying. The evaluation of fabricated scaffolds was performed by... 

    Fabrication of Nano Structure Tialite-fibroin Scaffold

    , M.Sc. Thesis Sharif University of Technology Hajseyedjavadi, Mahdieh (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    The development of novel three dimensional degradable porous scaffolds is of great interest for tissue engineering.silk ibroin has recently received intensive attention as a material for use in fabrication of 3D porous scaffolds beacuse of its excellent biocompatibility, physical and mechanical properties, and easy processibility. However, silk alone has no osteoinductive property and considerebely lower mechanical properties than native bone. In order to overcome this limitation silk fibroin can be combined with other materials.the properties of scaffold can be significantly improved and new features can be endowed by the second ccomposition. The present study deals with fabrication of... 

    Hybrid System for Growth Factor Delivery

    , M.Sc. Thesis Sharif University of Technology Torabi Rahvar, Parisa (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Platelet Rich Plasma (PRP) is a blood-derived product containing concentrate of platelets, which are a rich source of autologous growth factors. PRP injection has been used clinically as a therapeutic method for cartilage repair. However, clinical efficiency of this method is unpredictable, maybe as a result of burst release of growth factors then fail cell-stimulating potential as most biomolecules are cleaned before they can exert a therapeutic effect. The aim of this project was to prepare a suitable scaffold for PRP delivery to regenerate cartilage injuries. In order to resemble polysaccharide-protein nature of the cartilaginous extracellular matrix, in this study, we developed an... 

    Design and Manufacture of an Engineered Scaffold in Order to Repair Tissue Exposed to Mechanical Force, for Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Haghighi, Paniz (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. The goal of cartilage tissue engineering is to design a scaffold with proper pore structure and similar mechanical properties to the native tissue. In this study Porous scaffolds prepared from silk fibroin, chitosan and gelatin blends with varying ratio of silk fibroin and gelatin by freeze drying method were characterized for physicochemical, mechanical and biological properties. Among the... 

    Experimental Study of Using Cellulosic Compounds in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Golizadeh, Mortaza (Author) ; Vossoughi, Manouchehr (Supervisor) ; Karimi, Afzal (Supervisor) ; Faghihi, Faezeh (Co-Supervisor)
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate, cellulose, carboxymethyl cellulose and quaternary ammonium cationic cellulose for biomedical applications have been reported in this research. We describe preparation of cellulosic nanofibers through the electrospinning following deacetylation cellulose acetate. Moreover, surface modification of electrospun cellulose nanofibers is carried out to obtain carboxymethyl cellulose and quaternized cellulose nanofibers, respectively. At last, the structural, morphological, mechanical, swelling, wettability and the cell culture properties of the scaffolds were analyzed and... 

    Fabrication of Scaffold with Microfluidic Channels for Heart Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Momeni, Ehsan (Author) ; Mashayekhan, Shohreh (Supervisor) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Myocardial infarction (MI) is one of the diseases caused by the temporary or permanent cramp of major coronary arteries. Due to this blockage, blood flow to the heart's myocardial tissue is greatly reduced and finally the person suffered from a Heart stroke (HS). Heart tissue engineering is a promising approach, based on the combination of cells and suitable biomaterials to develop and create heart-like biological substitutes. Since high cardiac cell density, providing metabolic needs like oxygen and nutrients was a challenge. So creation of blood vessel networks within this type of designed tissue has been considered very much.The purpose of this project is to construct scaffolds with... 

    Synthesis of Hydroxyapatite Whisker and Nanorods/Polycaprolactone Composites and Scaffolds: In vitro & In vivo studies

    , M.Sc. Thesis Sharif University of Technology Lebasi, Mohammad Ali (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    This work describes the effect of hydroxyapatite with different morphology including nanorods and whisker on the properties of hydroxyapatite/polycaprolactone (HA/PCL) composite. Biodegradable polymer/Hydroxyapatite (HA) composites with the morphology of nanorods and whisker of (HA) as bone replacement scaffolds are synthesized by sol-gel and hydrothermal methods, respectively with a Ca/P ratio of 1.67 and 20:80 (HA/PCL).The crystallization behavior and porosity of HA/PCL composite are studied by scanning electron microscope and X-Ray diffraction. The response of bone marrow-derived human mesenchymal stem cells (hMSCs) in terms of cell proliferation and differentiation to the osteoblastic... 

    Chitosan/Gelatin/Mg Substituted Hydroxyapatite Nano Composite Scaffold for Bone Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Azamian, Fariba (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Fathi, Mohammad Hossein (Co-Advisor)
    Abstract
    The present study is work on fabrication and characterization of a chitosan/ gelatin/ Mg substituted hydroxyapatite nano composite scaffold for bone tissue engineering. At the first step pure and Mg-substituted hydroxyapatite (HA) (Ca10-xMgx(PO4) 6OH2) nano-hexagonal rods with 14–45 nmdiameter.for this, calcium nitrate, magnesium phosphate hydrate and potassium dihydrogenphosphate were used as precursors for Ca, Mg, and P, respectively. Calculated amounts of magnesium ions (Mg+2) especially from 0 to 8% (molar ratio) were incorporated as substituted into the calcium sol solution. Deionized water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH= 9.... 

    Evaluation of Nanobiocomposite Based on Thermoplastic Starch for Bone Tissue Engineering Applications

    , M.Sc. Thesis Sharif University of Technology Taherimehr, Marzieh (Author) ; Bagheri, Reza (Supervisor) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Development of new engineered materials for bone tissue engineering applications is rapidly growing. The most important characteristics of materials, which can be used for bone tissue engineering applications, are appropriate mechanical properties, degradation rate, swelling behavior, and bioactivity. The goal of the current investigation is to study the feasibility of incorporating a modified nano-biocomposite based on biodegradable thermoplastic starch for bone tissue engineering. Nano particles of ?-tricalcium phosphate and hydroxyapatite were incorporated for reinforcing the matrix as well as improving the bioactivity. A second biodegradable polymer, i.e. polycaprolactone, was used... 

    In Situ Synthesis of Nanorod Hydroxyapatite Reinforced Polycaprolactone Nanocomposite for Bone Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Moeini, Saeed (Author) ; Mohammadi, Mohammad Reza (Supervisor) ; Simchi, Abdol Reza (Supervisor)
    Abstract
    Hydroxyapatite is the most substantial inorganic constituent of bone tissue which displays splendid biocompability and bioactivity. Nevertheless, its mechanical properties is not utmost appropriate for a bone substitutes. Therefore, it is used to improve the mechanical properties of polymer matrix composite scaffolds. In the present work polycaprolactone as a polymeric matrix was employed to fabricate hydroxyapatite-polycaprolactone biocomposite scaffolds via in situ route. Solvothermal method was employed to synthesize in situ hydroxyapatite in polymer matrix. Porous scaffolds were fabricated via freeze-drying/porogen leaching. Physical, mechanical (compressive module and compressive... 

    Simulation of Flow's Effect on Microfluid Through 3-Dimentional Scaffold in a Bioreactor

    , M.Sc. Thesis Sharif University of Technology Seddiqi, Hadi (Author) ; Bastani, Dariush (Supervisor) ; Amoabediny, Ghassem (Supervisor)
    Abstract
    Tissue engineering aims to produce artificial tissues and organs to treat the damaged part, by implant in body of patients, is an important issue in research and development. In cases that tissue damage is sever or due to genetic defects or congenital disease, tissue in the body are not fully formed, tissue engineering can be used to regenerate, repair or replace organs or tissues. Cell culture on the scaffold and put it in the bioreactor is a critical step in the formation of tissues or organs. Among various bioreactors, perfusion bioreactor due to increase of convection in the structure of cell-scaffold is widely used. Enhancement of convection increases shear stress on the cells that is... 

    Combination of PRP (platelet Rich plasma)with Polymeric Scaffold for Cartilage Regeneration

    , M.Sc. Thesis Sharif University of Technology Rafiei, Mehrnoosh (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor)
    Abstract
    The aim of this study is the fabrication of 3D porous PCL scaffolds contain core-shell fibers for cartilage tissue engineering. The novel fabrication method is co-axial wet electrospinning simultaneously. These tablets like scaffolds have superior porosity and pore sizes for cell culturing and cell-cell interaction as they have good mechanical properties for cartilage tissue engineering in comparison to 2D electrospun scaffolds. The structure of these 3D scaffolds is mimicking the ECM of cartilage. This study presents the coaxial electrospinning of PCL nanofibers encapsulated with bovine serum albumin and platelet rich plasma for demonstration of controlled release and bioactivity retention,... 

    Design and Fabrication of Engineered Biomaterials for Tissue Engineering Applications such as Cardiovascular System

    , M.Sc. Thesis Sharif University of Technology Khayat Norouzi, Sara (Author) ; Shamlou, Amir (Supervisor)
    Abstract
    Cardiovascular diseases are the leading cause of death all over the world, even more common than cancers. The first reason of mortality in Iran according to statistics is the occlusion of coronary arteries. Unfortunately almost one third of patients doesn’t have enough blood vessels to be used in the bypass surgery and need artificial vessels. These artificial blood vessels with small diameters (less than 6 mm) will fail quickly. As a result there is an increasing demand for tissue engineered blood vessels which are capable of enduring high blood pressures. An artificial blood vessel should mimic both structure and mechanical properties of the real one. Blood vessels have layered structures,... 

    Design and Construction of PCL Nanofiber Scaffold for Bladder Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Vakilian, Saeed (Author) ; Yaghmaei, Soheyla (Supervisor) ; Mashayekhan, Shohreh (Co-Advisor)
    Abstract
    In this project, a novel system of bioactive electrospun scaffold for bladder tissue engineering , has been investigated to control in vitro cell differentiation, and utilize in in vivo vascularization and tissue formation. This method doesn’t have custom bioactive scaffolds problems such as, protein instability, technical complexity and, difficulties in accurate kinetics prediction. First of all, protein loaded chitosan nanoparticles based on ionic gelation interaction between chitosan and Sodium tripolyphosphate were prepared. Maximum protein loading efficiency (80% for BSA & 99% for TGF-beta1) in chitosan nanoparticles was obtained at mean diameter of 51nm. Moreover polycaprolactone... 

    Simulation of Mass Transfer in Cartilage Regeneration

    , M.Sc. Thesis Sharif University of Technology Tadj Soleiman, Tannaz (Author) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    The in vivo cell culture process as the main part of tissue engineering was investigated through mathematical modelling and computational fluid dynamic (CFD) simulation of cartilage cell growth. Simulations can provideprocess insights for defining the optimum conditions in order to reach higher culture efficiency. In the mathematical modelling of the cell growth, it was intended to consider the most influencing factors such as biomass concentration, volume fraction, glucose concentration and shear stress levels. These results can be obtained mathematically by solving a set of partial differential equations coupling the glucose concentration, the velocity field and cell growth with each other.... 

    Development of an Optimized Skin Scaffold Capable of Growth Factor Release for Acute Skin Wound Healing

    , M.Sc. Thesis Sharif University of Technology Sarmadi, Morteza (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keykhosrow (Supervisor)
    Abstract
    As the first barrier in front of external damages, skin is prone to the largest number of damages applied to one’s body. Acute wounds are considerably prevalent world-widely, imposing very high costs to governments. The purpose of the current project, is to propose a novel skin scaffold capable of growth factor delivery for enhancing the wound healing process in acute wounds. Such a scaffold should be able to decrease the required time for healing process, also to improve the quality of the regenerated skin compared to available commercial products. Furthermore, it should be highly biocompatible, biodegradable, and non-toxic. In this project, to manufacture the artificial skin scaffold, a... 

    Fabrication of Fibrin Sheets for Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Hajian Foroushani, Zahra (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The cornea is a transparent, avascular, multilayer, connective tissue. When the erosion process of these cells occur, where natural and quick restoration is expected, corneal disorders begin. Regeneration of corneal tissue, using a biocompatible method is a great point of interest. Nowadays, scaffold based on amniotic membrane is used as a basement membrane in the regeneration of corneal tissue. Lots of researches focused on using auto graft scaffold to decrease the inflammation and infection of an allografts and synthetic scaffolds, while overcoming amniotic membrane’s weak mechanical properties. The aim of this survey is to construct an appropriate scaffold from patient’s own blood to... 

    Synthesis, Characterization and Optimization of an In situ Forming Hydrogel Derived from Extracellular Matrix for Cardiac Tissue Engineering Applications

    , M.Sc. Thesis Sharif University of Technology Mousavi, Ali (Author) ; Mashayekhan, Shohreh (Supervisor) ; Baheiraei, Nafiseh (Supervisor) ; Pourjavadi, Ali (Co-Supervisor)
    Abstract
    Myocardial Infarction occurs due to sudden blockage in a coronary artery and causes necrosis of myocardial tissue. Since myocardium is unable to self-regenerate, cardiac tissue engineering has become a promising therapeutic approach for MI treatment by restoring heart function via combination of cells, biomaterials and signaling factors. For this purpose, myocardial extracellular matrix (ECM) is an attractive biomaterial providing better biomimetic for cultured cells. In this project, we synthesized an in situ forming hydrogel derived from myocardial ECM and for improving mechanical and electrical properties of ECM hydrogel we added oxidized alginate (OA) with 5% oxidation degree and APTMS...