Loading...
Search for: tissue-engineering
0.01 seconds
Total 272 records

    Surface Modification of Bacterial Cellulose-Reinforced Keratin Nanofibers using Pluronic/Gum Tragacanth Hydrogel Nanoparticles Produced by Concurrent gel Electrospray/Polymer Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Azarniya, Amir (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor)
    Abstract
    In this work, wool keratin/polyethylene oxide (PEO) nanofibrous scaffolds were fabricated by electrospinning method. Bacterial cellulose nanofibrils (BCNFs) were embedded in the electrospun keratin/PEO nanofibers. Incorporation of BCNFs into the nanofibers enhances their hydrophilicity, mechanical properties and cell viability, adhesion and proliferation. Water contact angle of the nanofibers decreased from 126˚ to 83˚by addition of 1 wt % BCNFs. A thermogelling hydrogel based on carboxylated pluronic (Pl-COOH) and gum tragacanth (GT) was fabricated and polymer conjugation was confirmed by FTIR and H-NMR spectroscopy. Morphological and viscoelastic properties of GT-grafted Pl-COOH hydrogels... 

    Fabrication of Composite Scaffold Composed of Cartilage Extracellular Matrix/Chitosan with High Mechanical Strength for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Khozaei Ravari, Mojtaba (Author) ; Mashayekhan, Shohreh (Supervisor) ; Baghban Eslami Nejad, Mohammad Reza (Supervisor)
    Abstract
    Methods that has been used for articular defects are faced with many limitations, so new therapies based on tissue engineering were taken into consideration in recent years. However, tissue engineering also encounters challenges regarding optimal scaffold construction and suitable cell source selection. Mature harvested chondrocytes are limited in number and may lose their chondrogenic potential in several cultures, leading to dedifferentiation. In addition, using stem cells also presents unique challenges associated with them, among which hypertrophic differentiation is the most substantial problem. Choosing the appropriate biomaterial similar to the cartilage structure with sufficient... 

    Investigating the Optimum Conditions for Cell Growth and Behavior on Hydrogel Surfaces

    , M.Sc. Thesis Sharif University of Technology Hajiabbas, Maryam (Author) ; Mashayekhan, Shohre (Supervisor) ; Maghsudi, Vida (Supervisor)
    Abstract
    Generally, the concept of producing ‘spare parts’ of the body for replacement of damaged or lost organs lies at the core of the varied biotechnological practices referred as tissue engineering. Tissue engineering is an interdisciplinary field that incorporates principles of engineering with the life sciences. Tissue engineering is based on three principle; cells, scaffolds for cells expansion, attachment as an environment like ECM and growth factors. These things together can help tissue engineers to provide microenvironments which are suitable for special cells. The most important thing in this kind of works is the ability to simulate environment for cells the same as body. According to the... 

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    Abstract
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model

    , Article International Journal of Engineering Science ; Volume 121 , 2017 , Pages 91-107 ; 00207225 (ISSN) Fallah, A ; Ahmadian, M. T ; Mohammadi Aghdam, M ; Sharif University of Technology
    Abstract
    In this paper, a micromechanical study on rate-dependent behavior of connective tissues is performed. To this end, a hyper viscoelastic constitutive model consisting a hyperelastic part for modeling equilibrium response of tissues and a viscous part using a hereditary integral is proposed to capture the time-dependent behavior of the tissues. With regard to the hierarchical structure of the tissue, strain energy function are developed for modeling elastic response of the tissue constituents i.e. collagen fibers and ground matrix. The rate-dependency is incorporated into the model using a viscous element with rate-dependent relaxation time. The proposed constitutive model is implemented into... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3476-3480 ; 10263098 (ISSN) Ghafari, A. M ; Rajabi Zeleti, S ; Naji, M ; Ghanian, M. H ; Baharvand, H ; Sharif University of Technology
    Abstract
    For a successful repair and reconstruction of bladder tissue, fabrication of scaffolds with proper biochemical and biomechanical characteristics is necessary. Decellularized bladder tissue has been proposed in previous studies as a gold standard material for scaffold fabrication. However, weak mechanical properties of such a load-bearing tissue has remained a challenge. Incorporation of both biological and synthetic materials has been known as an effective strategy for improving mechanical and biological properties of the scaffolds. In the present work, a simple process was developed to fabricate hybrid hydrogel scaffolds with a biomimetic architecture from the natural urinary bladder... 

    Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing equisetum arvense herbal extract for bone tissue engineering

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 39 , 2017 ; 00218995 (ISSN) Khakestani, M ; Jafari, S. H ; Zahedi, P ; Bagheri, R ; Hajiaghaee, R ; Sharif University of Technology
    Abstract
    A series of herbal extract incorporated into poly(lactic acid) (PLA) composite nanofibrous scaffolds were successfully prepared by using electrospinning technique. Equisetum arvense extract (EE) and nanohydroxyapatite (nHA) in different quantities were loaded into PLA solution to fabricate composite nanofibrous webs under various electrospinning conditions. Uniform nanofibers were obtained with an average diameter of 157 ± 47 nm in the case of those containing the herbal extract. Characterization of the webs was carried out by means of Fourier transform infrared (FTIR) spectroscopy, field emission-scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and... 

    Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications

    , Article Acta Biomaterialia ; Volume 62 , 2017 , Pages 42-63 ; 17427061 (ISSN) Vedadghavami, A ; Minooei, F ; Mohammadi, M. H ; Khetani, S ; Rezaei Kolahchi, A ; Mashayekhan, S ; Sanati Nezhad, A ; Sharif University of Technology
    Abstract
    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most... 

    The Fabrication of Porous Scaffolds of Polyvinyl Chloride/Polyethylene Glycol and Nano Diamonds Using Gamma Radiation for Medical Applications

    , M.Sc. Thesis Sharif University of Technology Jabbar, Ali (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Today, tissue engineering research is expanding to a large extent, so tissue engineering has the ability to build artificial organs and tissues. In this project, we have used two polymers of polyethylene glycol and polyvinyl chloride, which are used for network irradiation. After irradiation, these polymers were made by drying the freewheeling porous scaffolds and the effect of different parameters on the structure of these scaffolds was investigated. To investigate the effect of different factors on gelation, swelling, tensile test, degradability and finally the conditions of fibroplast cell growth on scaffolds were investigated. The results of the gel test showed that the gel was higher... 

    Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 79 , 2017 , Pages 783-792 ; 09284931 (ISSN) Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Abstract
    Natural silk fibroin (SF) polymer has biomedical and mechanical properties as a biomaterial for bone tissue engineering scaffolds. Freeze-dried porous nanocomposite scaffolds were prepared from silk fibroin and titanium dioxide (TiO2) nanoparticles as a bioactive reinforcing agent by a phase separation method. In order to fabricate SF/TiO2 scaffolds, 5, 10, 15 and 20 wt% of the TiO2 were added to the SF. The phase structure, functional groups and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques, respectively. Porosity of the scaffolds was measured by Archimedes' Principle. In addition,... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues

    , Article Journal of Medical Engineering and Technology ; Volume 41, Issue 5 , 2017 , Pages 339-345 ; 03091902 (ISSN) Nazarynasab, D ; Farahmand, F ; Mirbagheri, A ; Afshari, E ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of... 

    Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application

    , Article Biologicals ; Volume 48 , 2017 , Pages 39-46 ; 10451056 (ISSN) Nasiri, B ; Mashayekhan, S ; Sharif University of Technology
    Academic Press  2017
    Abstract
    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The... 

    Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: using response surface methodology

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 545-553 ; 09284931 (ISSN) Radaei, P ; Mashayekhan, S ; Vakilian, S ; Sharif University of Technology
    Abstract
    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend... 

    Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 653-662 ; 09284931 (ISSN) Hosseinzadeh, S ; Soleimani, M ; Vossoughi, M ; Ranjbarvan, P ; Hamedi, S ; Zamanlui, S ; Mahmoudifard, M ; Sharif University of Technology
    Abstract
    Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and... 

    Review on different experimental techniques developed for recording force-deformation behaviour of soft tissues; with a view to surgery simulation applications

    , Article Journal of Medical Engineering and Technology ; Volume 41, Issue 4 , 2017 , Pages 257-274 ; 03091902 (ISSN) Afshari, E ; Rostami, M ; Farahmand, F ; Sharif University of Technology
    Abstract
    Different experimental techniques which have been developed to obtain data related to force-deformation behaviour of soft tissues play an important role in realistically simulating surgery processes as well as medical diagnoses and minimally invasive procedures. Indeed, an adequate quantitative description of soft-tissue-mechanical-behaviour requires high-quality experimental data to be obtained and analysed. In this review article we will first scan the motivations and basic technical issues on surgery simulation. Then, we will concentrate on different experimental techniques developed for recording force-deformation (stress-strain) behaviour of soft tissues with focussing on the in-vivo... 

    Fabrication of a Multi-Layered Scaffold to Be Used in Dermal Wound Healing

    , M.Sc. Thesis Sharif University of Technology Kamali, Ali (Author) ; Shamloo, Amir (Supervisor) ; Asghari, Mohsen (Co-Advisor)
    Abstract
    Wound healing by engineered scaffolds is a new step in bio-technology and medical studies in recent years. The goal of the current study is to propose a novel structure for a tissue-engineered scaffold to be used in wound healing. Influenced from the multi-layered structure of natural human skin, the fabricated scaffold consists of two layers to maximize similarity with natural skin. This product is comprised of an electrospun layer made of polycaprolactone and polyvinyl alcohol and a hydrogel layer made of chitosan and gelatin. In order to form a porous medium in the hydrogel layer, freeze-gelation was used instead of freeze drying. The evaluation of fabricated scaffolds was performed by... 

    Fabrication of Nano Structure Tialite-fibroin Scaffold

    , M.Sc. Thesis Sharif University of Technology Hajseyedjavadi, Mahdieh (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    The development of novel three dimensional degradable porous scaffolds is of great interest for tissue engineering.silk ibroin has recently received intensive attention as a material for use in fabrication of 3D porous scaffolds beacuse of its excellent biocompatibility, physical and mechanical properties, and easy processibility. However, silk alone has no osteoinductive property and considerebely lower mechanical properties than native bone. In order to overcome this limitation silk fibroin can be combined with other materials.the properties of scaffold can be significantly improved and new features can be endowed by the second ccomposition. The present study deals with fabrication of... 

    Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 66, Issue 3 , 2017 , Pages 105-114 ; 00914037 (ISSN) Nojoomi, A ; Tamjid, E ; Simchi, A ; Bonakdar, S ; Stroeve, P ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    In this study, injectable PEG-based hydrogels containing Laponite particles with mechanical and structural properties close to the natural articular cartilage are introduced. The nanocomposites are fabricated by imide ring opening reactions utilizing synthesized copolymers containing PEG blocks and nanoclay through a two-step thermal poly-(amic acid) process. Butane diamine is used as nucleophilic reagent and hydrogels with interconnected pores with sizes in the range of 100–250 µm are prepared. Improved viscoelastic properties compared with the conventional PEG hydrogels are shown. Evaluation of cell viability utilizing human mesenchymal stem cells determines cytocompatibility of the...