Loading...
Search for: transport-properties
0.009 seconds
Total 124 records

    Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the... 

    Improvement of non-aqueous colloidal gas aphron-based drilling fluids properties: role of hydrophobic nanoparticles

    , Article Journal of Natural Gas Science and Engineering ; Volume 42 , 2017 , Pages 1-12 ; 18755100 (ISSN) Hassani, A. H ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Application of the colloidal gas aphrons (CGAs) in minimizing formation damage by plugging pore mechanism is now wildly accepted due to numerous successful field experience. One of the pivotal factors which affects the pore blockage ability of micro-bubbles is their stability. This experimental study tries to investigate the possible synergistic effect of nanoparticles on improving the stability and other properties of non-aqueous CGA drilling fluids, in both bulk and porous media. In particular, two types of hydrophobic nanoparticles including silicon dioxide nanopowder coated with 2 wt% Silane and nanoclay, in presence of a treated version of bentonite (Bentone 34) as a stabilizer and... 

    Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability

    , Article Advanced Energy Materials ; Volume 8, Issue 23 , 2018 ; 16146832 (ISSN) Tavakoli, M. M ; Yadav, P ; Tavakoli, R ; Kong, J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high-performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a-SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double-layer structure of TiO2 compact layer (c-TiO2) and a-SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a-SnO2/c-TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c-TiO2 based device.... 

    Simulation of incompressible multiphase flows using the artificial compressibility method

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Mortezazadeh, M ; Hejranfar, K ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    The Eulerian methods are susceptible to generate the nonphysical spurious currents in the multiphase flow simulations near the interfaces. This paper presents a new Eulerian method to accurately simulate the velocity fields, especially near the multiphase flow interfaces and prevents the numerical results from generating the nonphysical currents. A Eulerian central difference finite-volume scheme equipped with the suitable numerical dissipation terms is used to simulate incompressible multiphase flows. The interface is captured by Flux Corrected Transport-Volume of Fluid method (FCT-VOF). Increasing the accuracy near the sharp gradients, such as interface, the conservative form of... 

    CFD-DEM modeling of cuttings transport in underbalanced drilling considering aerated mud effects and downhole conditions

    , Article Journal of Petroleum Science and Engineering ; Volume 160 , 2018 , Pages 229-246 ; 09204105 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a developed CFD (Computational fluid dynamics)-DEM (Discrete elements method) model to study the cuttings transportation in aerated mud drilling process for inclined annuli at downhole conditions. The model is conducted to determine the effects of liquid flow rate, air injection rate, annulus inclination angle, elevated temperature and pressure on the cuttings transport efficiency. The motion of the fluid is computed using CFD based approach with gas–liquid interface capturing provided by the volume-of-fluid (VOF) method. The dynamics of cutting phase is studied by DEM using soft sphere approach in order to take into account the particle collision phenomenon. The... 

    Numerical solution of the neutron transport equation using cellular neural networks

    , Article Annals of Nuclear Energy ; Volume 36, Issue 1 , 2009 , Pages 15-27 ; 03064549 (ISSN) Boroushaki, M ; Sharif University of Technology
    2009
    Abstract
    Various methods have been used for solving the neutron transport equation in the past, and a number of computer codes have been developed based on these solution methods. This paper describes a novel method for the solution of the steady-state and time-dependent neutron transport equation using the duality between neutronic parameters in the method of characteristic (MOC) and the electrical parameters in the cellular neural networks (CNN). The relevant electrical circuit can be simulated by professional electrical circuit simulator software, HSPICE. This software is used for numerical solution of the transport equation only by preparation of appropriate inputs. This method does not need... 

    First principles study of the I-V characteristics of the alkane-thiols nano-molecular wires

    , Article Current Applied Physics ; Volume 9, Issue 2 , 2009 , Pages 367-373 ; 15671739 (ISSN) Aghaie, H ; Gholami, M. R ; Darvish Ganji, M ; Taghavi, M. M ; Sharif University of Technology
    2009
    Abstract
    We report a density functional non-equilibrium Green's function study of electrical transport in a single molecular conductor consisting of an ethane-dithiolate (C2H4S2) molecular wire with two sulfur end groups bonded to the Au(1 1 1) electrodes. We show that the current was increased by increasing the external voltage biases. The projected density of states (PDOS) and transmission coefficients T(E) under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to the increase of the current. Furthermore, the investigation of the transport properties of the pentane-dithiolate (C5H10S2)... 

    Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer

    , Article Solar Energy ; Volume 191 , 2019 , Pages 647-653 ; 0038092X (ISSN) Mohamadkhani, F ; Javadpour, S ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The efficiency of planar perovskite solar cells (PSCs) with SnO2 as electron transport layer is already more than 19% achieved under controlled atmosphere. PSCs with solution processed SnO2 show high hysteresis and low fill factor. One way to improve the planar PSCs is using buffer layer between electron transport layer and perovskite to enhance the photo-electron extraction process. In this study, SnO2 and SnO2/CdS layers were fabricated by solution process using a suspension including CdS nanoparticles synthesized via a simple solution route. Then planar PSCs with the structure of Glass/FTO/ETL/Perovskite/Sprio-OMeTAD/Au were fabricated in ambient air condition using SnO2 and SnO2/CdS as... 

    A coupled geochemical and fluid flow model to simulate permeability decline resulting from scale formation in porous media

    , Article Applied Geochemistry ; Volume 107 , 2019 , Pages 131-141 ; 08832927 (ISSN) Shabani, A ; Kalantariasl, A ; Abbasi, S ; Shahrabadi, A ; Aghaei, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Scale precipitation due to the mixing of incompatible injected water with formation brine and its subsequent deposition in porous media is an unpleasant phenomenon in water injection projects that can lead to severe injectivity and productivity decline. As a result of the complexity of geochemical reactions, modelling scale precipitation and deposition is a challenge. This paper presents a coupled geochemical and fluid flow model to simulate reactive flow in porous media which models pressure difference increase resulting from scale formation during water injection into porous media. To simulate chemical reactions during scale formation and subsequent rock permeability decline, PHREEQC... 

    Manipulation of structural, electronic and transport properties of hydrogen-passivated graphene atomic sheet through vacancy defects: First-principles numerical simulations based on density-functional-theory along with tight-binding approximation

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Sattar, A ; Irfan, M ; Iqbal, A ; Shahid, F. A ; Junaid Amjad, R ; Usman, A ; Mahmood, H ; Latif, H ; Imran, M ; Akhtar Ehsan, S ; Akhtar, M. N ; Akbar, N ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Using the first-principles procedure of density-functional-theory within tight-binding approximation and nonequilibrium Green's function formalism, this paper reports on the impact of vacancy defects on the structural, electronic and transport properties of hydrogen-passivated graphene atomic sheet. After the introduction of vacancy defects in graphene atomic sheet passivated with hydrogen atoms, apart from increase in band gap, a suppression is noted in the intensity of transmission channels and density of states arising from the long array deformations of the graphene sheet and a corresponding shift of the Fermi level. This in turn decreases the conductance of the defected graphene atomic... 

    Atomic layer deposition of an effective interface layer of tin for efficient and hysteresis-free mesoscopic perovskite solar cells

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 7 , 2020 , Pages 8098-8106 Chavan, R.D ; Tavakoli, M. M ; Prochowicz, D ; Yadav, P ; Lote, S. S ; Bhoite, S. P ; Nimbalkar, A ; Hong, C. K ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Perovskite solar cells (PSCs) have experienced outstanding advances in power conversion efficiencies (PCEs) by employing new electron transport layers (ETLs), interface engineering, optimizing perovskite morphology, and improving charge collection efficiency. In this work, we study the role of a new ultrathin interface layer of titanium nitride (TiN) conformally deposited on a mesoporous TiO2 (mp-TiO2) scaffold using the atomic layer deposition method. Our characterization results revealed that the presence of TiN at the ETL/perovskite interface improves the charge collection as well as reduces the interface recombination. We find that the morphology (grain size) and optical properties of... 

    Mesoporous nanostructured composite derived from thermal treatment CoFe prussian blue analogue cages and electrodeposited NiCo-S as an efficient electrocatalyst for an oxygen evolution reaction

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 14 , 2020 , Pages 16250-16263 Hafezi Kahnamouei, M ; Shahrokhian, S ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Developing effective and priceless electrocatalysts is an indispensable requirement for advancing the efficiency of water splitting to get clean and sustainable fuels. Herein, we reported a feasible strategy for preparing a trimetallic (NiCoFe) superior electrocatalyst with a novel open-cage/3D frame-like structure for an oxygen evolution reaction (OER). It is prepared by consequent thermal treatments of a CoFe Prussian blue analogue frame/cage-like structure under an argon (CoFeA-TT) atmosphere and then electrochemical deposition of nickel-cobalt sulfide nanosheets as a shell layer on it. The electrochemical measurements demonstrated that the deposition of NiCo-S on CoFeA-TT... 

    Study on spray-pyrolyzed In2S3 thin films, targeted as electron transport layer in solar energy

    , Article Journal of Photonics for Energy ; Volume 10, Issue 2 , 2020 Hashemi, M ; Heidariramsheh, M ; Ghorashi, S. M. B ; Taghavinia, N ; Mahdavi, S. M ; Sharif University of Technology
    SPIE  2020
    Abstract
    Efficient electron transport layers (ETLs) play a pivotal role in the performance of solar cells. In recent years, Indium sulfide (In2S3) has been studied as a promising ETL in CuInGaS(e)2, Cu2ZnSnS(e)4, and perovskite solar cells. Despite several studies on spray-deposited In2S3, there is no complete experimental investigation on In2S3 thin films. The effect of the molar ratio of S/In and the type of indium precursor on the structural, morphological, optical, and electrical properties of sprayed-In2S3 layers has been studied. Films were characterized using x-ray diffraction, scanning electron microscopy (SEM), optical transmission (UV-Vis), Mott-Schottky analysis, four-point probe, and... 

    Mesoscopic rheological modeling of drilling fluids: Effects of the electrolyte

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Kariman Moghaddam, A ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drilling fluid is a complex fluid, including base fluid and other materials, carrying out the vital functions during drilling operation such as cutting transport and controlling formation pressure. In order to optimize performance of a drilling process, a reliable rheological model is required in the computation of fluid flow dynamics. Time-independent Generalized Newtonian formulation are the most common models for describing the rheological behavior of drilling fluids due to its simplicity and ease of use, in spite the fact that they are not able to predict the normal stresses and could not consider effects of active components on the rheological behavior of the drilling fluid and also... 

    Insights into the pore-scale mechanisms of formation damage induced by drilling fluid and its control by silica nanoparticles

    , Article Energy and Fuels ; Volume 34, Issue 6 , 20 May , 2020 , Pages 6904-6919 Mohammadi, M ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The formation damage (FD) caused by the invasion of drilling fluid severely affects reservoir performance during production. Most of the published research studies which address this type of FD have been carried out at the core or field scale. Thus, the main aim of the paper is to investigate the pore-scale mechanisms of FD induced by drilling fluids and their control with silica nanoparticles (NPs) using a microfluidic approach. The proper identification of the mechanisms of FD can lead to the proper selection of NP type and concentration as well as a suitable method to remediate FD. The micromodel was designed in a way to closely simulate the cross-flow at the wellbore surface. A... 

    Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework

    , Article Computers and Geotechnics ; Volume 128 , December , 2020 Khoei, A. R ; Salehi Sichani, A ; Hosseini, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a fully coupled numerical model is developed based on the X-FEM technique to simulate the reactive acid transport in fractured porous media. The porous medium consists of the solid and fluid phases, in which the fluid phase includes water and acid components, and chemical reactions can be occurred between acid component and solid phase at the solid–fluid interfaces. The governing equations include the mass and momentum conservation laws for fluid phase, and the advective–diffusive transport of acid component that must be solved to obtain the primary unknowns, including the pore fluid pressure, acid concentration, and fluid velocity vector. Applying the... 

    Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers

    , Article Solar Energy ; Volume 208 , 2020 , Pages 697-707 Kazemzadeh Otoufi, M ; Ranjbar, M ; Kermanpur, A ; Taghavinia, N ; Minbashi, M ; Forouzandeh, M ; Ebadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In planar perovskite solar cells (PSCs), engineering the extraction and recombination of electron–hole pairs by modification of the electron transport layer (ETL)/perovskite interface is very vital for obtaining high performance. The main idea here is to improve properties of the TiO2/perovskite interface by inserting an ultra-thin layer (UTL) of WO3 or SnO2 with the thickness of less than 10 nm by RF magnetron sputtering method. The structural and electrical characteristics of the samples were tested by XRD, AFM, FE-SEM, Mott-Schottky analysis, UV–Vis spectroscopy, J-V characterization and electrochemical impedance spectroscopy (EIS). It was found that the bilayer structured ETLs exhibit... 

    Developing 3D neutron transport kernel for heterogeneous structures in an improved method of characteristic (MOC) framework

    , Article Progress in Nuclear Energy ; Volume 127 , 2020 Porhemmat, M. H ; Hadad, K ; Salehi, A. A ; Moghadam, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Given the importance and complexity of the three-dimensional (3D) neutron transport equation solution, in the current research, a new Modular Ray Tracing (MRT) Algorithm and 3D characteristic kernel for heterogeneous structures are presented. Improvement of memory management and cache coherency are achieved to some acceptable level. Also, parallel implementation of transport algorithm utilizing OpenMP, cause significant reduction in runtime. To validate our Algorithm, first, a self-constituted pin cell and a lattice arrangement are modeled and results are compared with Monte-Carlo simulation. Second, the well-known 3D benchmark, Takeda model one and two, are investigated and results compared... 

    Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL

    , Article Solar Energy ; Volume 197 , 2020 , Pages 50-57 Prochowicz, D ; Tavakoli, M. M ; Wolska Pietkiewicz, M ; Jędrzejewska, M ; Trivedi, S ; Kumar, M ; Zakeeruddin, S. M ; Lewiński, J ; Graetzel, M ; Yadav, P ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Hybrid perovskite solar cells (PSCs) have gained significant attention owing to their excellent physicochemical and photovoltaic properties. PSCs typically consist of a perovskite light absorber sandwiched between two carrier selective layers optimized with respect to optimal band alignment and low interfacial recombination. The quality of the perovskite layer and interfaces play major roles in the fabrication of high-performance PSCs. In the present work, we systematically investigate the planar structure PSCs based on TiO2 and TiO2/ZnO electron transport layers (ETLs), which provide deeper insight into the charge recombination and accumulation mechanisms. We show that the double-layer... 

    Sensitive voltammetric detection of melatonin in pharmaceutical products by highly conductive porous graphene-gold composites

    , Article ACS Sustainable Chemistry and Engineering ; 2020 Rahmati, R ; Hemmati, A ; Mohammadi, R ; Hatamie, A ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    This work presents a novel melatonin sensor based on unfunctionalized macroporous graphene networks decorated with gold nanoparticles for the differential pulse voltammetric detection of melatonin in pharmaceutical products. Highly porous graphene structures were prepared by metallic template-assisted chemical vapor deposition, and their active surface area and electrocatalytic activity were improved by electrochemical deposition of gold nanoparticles (50-250 nm) on their struts. The graphene-gold electrodes present a highly sensitive performance toward electro-oxidation of melatonin with a wide linear range of 0.05-50 μM, a low detection limit of 0.0082 μM (3σ/m), and a significant...