Loading...
Search for: viscoelasticity
0.014 seconds
Total 214 records

    Theoretical and Experimental Investigation of Flow behavior of Nanofield Viscoelastic Fluids in Contraction Flow

    , M.Sc. Thesis Sharif University of Technology Behrang, Arash (Author) ; Ramazani Saatatabadi, Ahmad (Supervisor)
    Abstract
    In this work, the viscoelastic fluids flow and their short fiber suspensions has been modeled in contraction geometry using conformation models, these models predict behavior of polymeric chains in contraction geometry. Prediction of viscoelastic fluids flow through a contraction is very important, especially in polymer processing where a polymer melt in barrel of an extruder is going to pass through a narrow die. We expect to see an eddy in each corner of barrel. The result has shown that increasing of De number enhances the eddy magnitude; also with making acute angle, we see decreasing of eddy magnitude. Normal stresses and velocity were investigated in contraction and their results had... 

    Theoretical and Experimental Investigation of Die Swell Phenomenon for Polymer Nano-Composites

    , M.Sc. Thesis Sharif University of Technology Khodadadi Yazdi, Mohsen (Author) ; Ramezani Saadat Abadi, Ahmad (Supervisor)
    Abstract
    This thesis was conducted both numerically and experimentally. In the experimental investigations aqueous solutions of high molecular weight Carboxymethylcellulose (CMC) was used. The experimental set-up was composed of a glass syringe, and a piston which can easily move through the syringe. Different die with aspect ratio ranging from 5.25 to 28.8 can be attached to the syringe. The syringe then is filled with the CMC solution with different weight fractions. Then using a force exerting on the piston, the solution comes out of the die and exiting velocity was calculated from weight of CMC solution that exit from die in a definite time. High quality photographs were taken from extrudate... 

    Simulation of Fluid-Solid Mixtures Using SPH Method

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Reza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Taghizadeh Manzari, M. (In this work, a modified Smoothed Particle Hydrodynamics (SPH) method, with a new moving solid boundary treatment approach, is utilized to simulate the particulateflow problems. The renormalized first and second derivative schemes which lead tothe consistency of the method, are also used along with a modification to the continuityequation which prevents the spurious pressure oscillations. The proposed methodis validated by solving benchmark problems of solid body motion in channel flows.There is a good agreement between the obtained results and those reported in theliterature. The convergence of solutions for different domain discretizations is alsoassessed. In order... 

    Analitical and Numerical Investigation of Mechanical Response of Steel Cable

    , M.Sc. Thesis Sharif University of Technology Babaei Darabad, Saman (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Although many aspects of helical strand have been carried out, there are still some situations which need more studies. Based on previous studies of wire rope the constitutive equations regarding the rope tension and torque to the rope deformations are carried out. In which constitutive constants depend on both the rope material and geometry of the rope. Equations of motion for straghit rope loaded simultaneously in tension and torque are derived, and with using extensional-torsional deformations in both side of the rope, dynamic stiffness matrix is derived. Some experimental results and currently models are compared with my research model numerically. Finally, mechanic response of helically... 

    Evaluation of the Performance of Viscoelastic Dampers in Controlling the Seismic Induced Response of Structures

    , M.Sc. Thesis Sharif University of Technology Gholami, Adel (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    In the present study, the performance of Viscoelastic Dampers in reducing the seismic response of the structures was investigated. For this purpose, first the effect of added damping to the system was studied. Number of 3-D steel structural models, with and without eccentricity which are designed with the 2800 code (first edition) and 519 code provisions that is not satisfied the provisions of the code-2800(third edition) is considered. It is assume that this system is located on a relatively stiff soil (soil type II based on Iranian Seismic Standard Code - 2800), a number of compatible earthquake records also considered to be used in the parametric studies. The results indicate that in... 

    Investigation of the Role of Fiber Reinforcement on the Performance of Rubber Based Friction Material

    , M.Sc. Thesis Sharif University of Technology Arjmand, Mohammad (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Friction composites, as a part of vehicle safety system, should hold some characteristics such as high wear resistance, low weight, durability, low noise, stable friction coefficient, availability and low price. It is very interested to use mixture of rubber and resin in friction materials to reach good properties of both rubber and resin simultaneously. This mixture is especially used in railway’s brake pads. Fibrous reinforcement is another important ingredient in friction composites. Asbestos used to be the most significant fibrous reinforcement due to its appropriate tribological specifications but the recent ban on asbestos by environmental protection agency has forced the friction... 

    Investigating the Performance of Viscoelastic Dampers in Reducing the Seismic Responses of 3D Irrigular Structural Models, Considering Soil-Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Ghanbari, Yasmin (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    Viscoelastic(VE) dampers are among the most practical passive control devices that are used to reduce the seismic-induced response of the structures. In this regard, extensive parametric studies have been conducted so far to investigate the performance of these dampers in reducing the seismic response of the structures under various types of ground motions and site soils. In most of these researches, the effect of soil-structure interaction (SSI) is neglected which is acceptable only for the structures located on stiff soils. In present research, the effect of the soil-structure interaction on the performance of VE dampers in reducing the seismic structural response is investigated. Also,... 

    The effects of nonlinearities on the vibration of viscoelastic sandwich plates

    , Article International Journal of Non-Linear Mechanics ; Vol. 62 , 2014 , Pages 41-57 ; ISSN: 00207462 Mahmoudkhani, S ; Haddadpour, H ; Navazi, H. M ; Sharif University of Technology
    Abstract
    The nonlinear free and forced bending vibration of sandwich plates with incompressible viscoelastic core is investigated under the effects of different source of nonlinearities. For the core constrained between stiffer layers, the transverse shear strains, as well as the rotations are assumed to be moderate. The linear and quadratic displacement fields are also adopted for the in-plane and out-of-plane displacements of the core, respectively. The assumption of moderate transverse strains requires a nonlinear constitutive equation which is obtained from a single-integral nonlinear viscoelastic model using the assumed order of magnitudes for linear strains and rotations. The 5th-order method... 

    High frequency oscillatory flow in micro channels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 355-360 ; ISSN: 09277757 Karbaschi, M ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
    Abstract
    This paper deals with computational and experimental studies on the oscillatory flow at high frequencies up to 100. Hz performed with the Oscillating Drop and Bubble Analyzer (ODBA) setup based on the capillary pressure technique. The CFD results are validated considering pressure amplitude experimental data. The simulated results of phase shift between the generated oscillatory flow and the consequent pressure amplitudes show also good agreement with the experimental data. In absence of any compressibility and viscoelasticity effects and assumptions, a complex velocity field during oscillation is the main reason for the observation of a phase shift. The results of velocity profiles at the... 

    Analytical solution for creeping motion of a viscoelastic drop falling through a Newtonian fluid

    , Article Korea Australia Rheology Journal ; Vol. 26, issue. 1 , 2014 , pp. 91-104 ; ISSN: 1226119X Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    In this paper, an analytical solution for steady creeping motion of viscoelastic drop falling through a viscous Newtonian fluid is presented. The Oldroyd-B model is used as the constitutive equation. The analytical solutions for both interior and exterior flows are obtained using the perturbation method. Deborah number and capillary numbers are considered as the perturbation parameters. The effect of viscoelastic properties on drop shape and motion are studied in detail. The previous empirical studies indicated that unlike the Newtonian creeping drop in which the drop shape is exactly spherical, a dimpled shape appears in viscoelastic drops. It is shown that the results of the present... 

    Plaque structure affects mechanical stress distribution within blood vessels

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2014 ; 2014 , pp. 239-243 Mohseni, M ; Mehboudi, N ; Abdollahi, M ; Shamloo, A ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the effects of plaque structure on its stress distribution. Rupture of plaque causes cerebrovascular diseases which lead to high mortality rates all over the world. Computers are powerful tools to understand the mechanism of plaque rupture. In this study, 3D fluid structure interaction simulation is constructed in ABAQUS 6.13 to clarify the relation between stress distribution of plaque and its structure. A model of common carotid artery with distributed stenosis was chosen for the simulation. To investigate the effects of plaque structure on stress distribution, thickness of fibrous cap and lipid core size were varied in the stenosis.... 

    Rheology of interfacial layers

    , Article Current Opinion in Colloid and Interface Science ; Vol. 19, issue. 6 , 2014 , pp. 514-519 ; ISSN: 13590294 Karbaschi, M ; Lotfi, M ; Kragel, J ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
    Abstract
    Dilational and shear viscoelasticities are important properties of interfacial layers. These quantities are particularly relevant in all systems which contain a huge internal interfacial area such as foams and emulsions. Therefore, also the 3D rheological behavior of foams or emulsions studied by respective methods is superimposed by the 2D interfacial rheology.We report on recent developments in dilational and shear rheology from an experimental point of view as well as discuss the state of the art of the underlying theories. Examples of most relevant experiments are also presented and discussed. Although not yet extensively investigated, the links between bulk rheology of foams and... 

    Nonlinear dynamic analysis of a timoshenko beam resting on a viscoelastic foundation and traveled by a moving mass

    , Article Shock and Vibration ; Vol. 2014 , 2014 ; ISSN: 10709622 Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    The dynamic response of a Timoshenko beam with immovable ends resting on a nonlinear viscoelastic foundation and subjected to motion of a traveling mass moving with a constant velocity is studied. Primarily, the beam's nonlinear governing coupled PDEs of motion for the lateral and longitudinal displacements as well as the beam's cross-sectional rotation are derived using Hamilton's principle. On deriving these nonlinear coupled PDEs the stretching effect of the beam's neutral axis due to the beam's fixed end conditions in conjunction with the von-Karman strain-displacement relations is considered. To obtain the dynamic responses of the beam under the act of a moving mass, derived nonlinear... 

    Numerical analysis (finite element method) of brace effects on the adolescent idiopathic scoliosis during 24 hours

    , Article Biomedical Engineering - Applications, Basis and Communications ; Vol. 26, issue. 3 , June , 2014 ; 10162372 Gohari, E ; Haghpanahi, M ; Parnianpour, M ; Ganjavian, M. S ; Kamyab, M ; Sharif University of Technology
    Abstract
    In the adolescent idiopathic scoliosis (AIS) treatment, a brace is prescribed to the patients who have 20 to 45° curves on their spines to prevent the disorder's advancement. For the analysis of Milwaukee brace effects during time, finite element models (FEMs) of the spine (the thoracolumbar region) and the ribcage (contained 10 pairs of the ribs and the sternum) were prepared for two patients. For modeling the spine part, a new element was used in which a disc (as viscoelastic 3D beam) and a vertebra (as rigid link) were modeled as an element and the ribs and the sternum modeled by 3D elastic beams. The gravity, Milwaukee brace constraints and the forces of the brace's different regions... 

    Two-dimensional modeling of functionally graded viscoelastic materials using a boundary element approach

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 570-574 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Ashrafi, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    Abstract
    In this paper, a 2D boundary element approach able to model viscoelastic functionally graded materials (FGM) is presented. A numerical implementation of the Somigliana identity for displacements is developed to solve 2D problems of exponentially graded elasticity. An FGM is an advanced material in which its composition changes gradually resulting in a corresponding change in properties of the material. The FGM concept can be applied to various materials for structural and functional uses. Our model needs only the Green's function of nonhomogeneous elastostatic problems with material properties that vary continuously along a given dimension. We consider the material properties to be an... 

    Modeling of viscoelastic solid polymers using a boundary element formulation with considering a body load

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 499-504 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Ashrafi, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    Abstract
    In this work, a boundary element formulation for 2D linear viscoelastic solid polymers subjected to body force of gravity has been presented. Structural analysis of solid polymers is one of the most important subjects in advanced engineering structures. From basic assumptions of the viscoelastic constitutive equations and the weighted residual techniques, a simple but effective boundary element formulation is implemented for standard linear solid (SLS) model. The SLS model provides an approximate representation of observed behavior of a real advanced polymer in its viscoelastic range. This approach avoids the use of relaxation functions and mathematical transformations, and it is able to... 

    Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    , Article Frontiers of Mechanical Engineering ; Volume 6, Issue 4 , December , 2011 , Pages 409-418 ; 20950233 (ISSN) Rezvanil, M. J ; Kargarnovin, M. H ; Younesian, D ; Sharif University of Technology
    Abstract
    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to... 

    Real-time simulation of the nonlinear visco-elastic deformations of soft tissues

    , Article International Journal of Computer Assisted Radiology and Surgery ; Volume 6, Issue 3 , 2011 , Pages 297-307 ; 18616410 (ISSN) Basafa, E ; Farahmand, F ; Sharif University of Technology
    Abstract
    Purpose: Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. Method: The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. Results: The model was able to replicate complex biological soft tissue... 

    Rheological modeling of suspensions of fibrous nanoparticles in polymeric viscoelastic media

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 223 , 2015 , Pages 240-248 ; 03770257 (ISSN) Sodeifian, G ; Ramazani, S. A. A ; Ranjbari, R ; Sharif University of Technology
    Abstract
    A new rheological model is developed to predict viscous and elastic behavior of concentrated suspensions of short fiber and one dimensional nanoparticles in steady and transient shear flows, simultaneously. The previously presented models cannot predict such rheological behavior with a set of parameters. The reduced strain closure (RSC) model in spite of its ability to successfully reproduce the slow kinetics of orientation growth observed in concentrated short-fiber suspensions is not able to predict both the shear viscosity and the normal stress difference data together, which could be possibly due to the fact that an orientation model with a scalar interaction coefficient cannot predict... 

    Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 26, Issue 5 , October , 2010 , Pages 721-733 ; 05677718 (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    Abstract
    Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between...