Loading...
Search for: volume-of-fluid
0.006 seconds
Total 47 records

    Three Dimensional Simulation of Morphology of Nanodroplets Near and on Structured Substrates

    , M.Sc. Thesis Sharif University of Technology Vahid, Afshin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Mesoscopic hydrodynamic equations are solved employing a VOF based method to investigate the equilibrium shape of nanodroplets positioned over various topographic geometries of the supporting substrate for three-dimensional systems. By taking into account liquid-liquid and liquid-solid interactions a complex distribution for inter-molecular forces over the substrates (the disjoining pressure) is observed. In this research we show that motion of nanodroplets not only caused by contact angle difference in drplets two sides, but also depend on disjoining pressure parameters.Geometries with increasing complexities, from wedges to three dimensional edges and wedges, were explored with the main... 

    Simulation of Behavior of a Single Cavitating Bubble Near Solid Boundariesby solvingTwophase Navier-Stokes Equations with a Central Difference Finite Volume Method

    , M.Sc. Thesis Sharif University of Technology Mortezazadeh Dorostkar, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present work, the deformation and collapse of a single cavitating bubble near solid boundaries is simulated by solving the preconditioned, homogenous, multiphaseNavier-Stokes equations. Up to now, all studies in the literature performed by the volume of fluid (VOF)approach to capture the bubble surface have been based on the pressure-based category in which the flow variables are calculated through solving the Poisson equation. Here, the density-based category is applied and the solution methodology is based on the artificial compressibility approach. The compressible form of the Navier-Stokes equations is applied inside the bubble and the liquid phase is assumed to be incompressible.... 

    Comparison and Improving of Free Surface Modeling Methods In Moving Grids

    , M.Sc. Thesis Sharif University of Technology Jeddi, Reza (Author) ; Seif, Mohammad Saeed (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    In the present study a through comparison has been made between different free surface modeling methods. Methods for improving the current schemes are analyzed and studied. Among different proposed methods and based on the current in-house CFD solver’s limitations and capabilities, the Flux-Blending Strategy has been used for interface capturing in the framework of the Finite Volume Method (FVM). The proposed scheme has been coupled with other algorithms for improving the capabilities and functionality of the general computational fluid dynamic software, NUMELS, in order to simulate fluid flows with sharp interface.
    The improved interface capturing scheme uses the continuous switching... 

    Numerical Investigation of Motion of Droplets in Micro and Nanochannels

    , M.Sc. Thesis Sharif University of Technology Bedram, Ahmad (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In this research, droplet motion in symmetric and asymmetric junctions in micro and nano scales was investigated. Droplets motion in symmetric and asymmetric junctions have many applications in many industries such as chemical and pharmacy. In this research symmetric T-junction in micro and nano sizes was simulated numerically in 2D and 3D formes. Also asymmetric T-junction (with unequal width branches) was simulated numerically in two cases, 2D and 3D. In the asymmetric T-junction, also an analyrical theory was developed. Numerical simulation was performed by using VOF techniqe and analytical theory was developed by thin film theory. For verifying the accuracy of numerical solution, grid... 

    Numerical Simulation of Shaking Bioreactors for Cell Culture

    , M.Sc. Thesis Sharif University of Technology Ghahremannezhad, Ali (Author) ; Saidi, Mohammad Said (Supervisor)
    Abstract
    A bioreactor can refer to any device or system constructed on engineering basis and has an active biological medium. This medium includes aerobic and non-aerobic reactions in which organisms and the theire produced substances have the main role. One of the applications of bioreactors is to provide an appropriate medium for animal and plant cell culture and growth. Nowadays many biological processes in high volume scales are carried out in stirred tank bioreactors. In these bioreactors oxygen transfer is usually increased by increasing turbulence which is necessary for mixing nutrients and keeping the homogeneity of the medium. However, there are some limitations for increasing the stirring... 

    Numerical Simulation of Secondary Sedimentation Tanks to Increase the Efficiency

    , M.Sc. Thesis Sharif University of Technology Lak, Behzad (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Sedimentation tanks are one of the important and costly stages of water treatment process in which remained particles from previous stages settle down due to gravity force. In this research, the hydrodynamics of secondary settling tanks without and in the presence of particles is numerically investigated using VOF method in order to simulate the interphase using RNG k-ε for turbulence modelling. The simulations are performed by means of open-source code OpenFoam, and the code is developed to model particles in the flow. The calculated velocity profiles using VOF method show a reasonable agreement with the experimental data. Comparing the concentration profiles with experiments shows the... 

    The Study of the Effect of Surfactant on the Liquid Drop Motion In Fluid

    , M.Sc. Thesis Sharif University of Technology Kazempour, Ali (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Supervisor)
    Abstract
    The drop motion in fluid and the mass transfer is one of the most interesting and favorite topics that has attracted the attention of many researchers. Knowing the functions of the factors affecting the deformation and the process of mass transfer and the effects of the addition of the surfactant, improve the efficiency of the related industrial processes.In this regard, the present study examines how the shape and speed of a moving Newtonian drop in a Newtonian fluid, the mass transfer of soluble material from inside the drop to the surrounding fluid and also the study of the effect of surfactant on the dynamics of moving droplet is studied numerically. During the drop movement, the... 

    Numerical Investigation on Oil/Water Separation through Coalescence in Membrane Pores

    , M.Sc. Thesis Sharif University of Technology Rashidi, Hojat (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Oil/water separation is an important field, not only for scientific research, but also for environmental, economic, and social issues. On the one hand, oily wastewater, resulting from industries such as steel, aluminum, food, textile, leather, petrochemical and metal finishing, has become the most common pollutant all over the world. On the other hand, frequent oil spill accidents are of great concern since the discharge can lead not only to serious environmental pollution, but also a great loss of energy.
    In crude oil removing water is necessary due to reducing corrosion, increasing thermal values of fuels obtained from crude oil, preventing catalists from destruction by water and... 

    Prediction of Droplet size and Velocity Distribution by using Maximum Entropy Method

    , M.Sc. Thesis Sharif University of Technology Jafari, Sajjad (Author) ; Kebriaee, Azadeh (Supervisor)

    Numerical Investigation of Droplet Generation in a Microfluidic Flow-Focusing Junction Aiming High-Throughput Droplet Generation

    , M.Sc. Thesis Sharif University of Technology Mardani Boldaji, Fatemeh (Author) ; Taghipoor, Mojtaba (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Droplet microfluidic platform generates monodisperse droplets in a desired size through immiscible multiphase flows inside microchannels. Droplets are individual reactor and can be used for bio(chemical) analyses. Also, for materials fabrication, droplet microfluidics offers a versatile platform for generation of nano- or micro-sized particles and microcapsules that are widely used in drug delivery. In addition to the monodispersity, high-throughput generation is also necessary in many applications. Therefore, droplets must be formed in stable regimes (dripping and squeezing) in the highest possible frequency. In this study, the flow-focusing geometry, which is the most common geometry in... 

    Experimental and Numerical Study on Particle-Laden Flows

    , Ph.D. Dissertation Sharif University of Technology Afshin, Hossein (Author) ; Firoozabadi, Bahar (Supervisor) ; Rad, Manouchehr (Supervisor)
    Abstract
    Dense underflows are continuous currents that move down-slope due to their density being heavier than that of the ambient water. This difference between the dense fluid and environment fluid can be due to temperature difference, chemical materials, solved materials or suspend solid particles. In these currents, the effect of buoyancy force is produced by this difference density. In this research, many experiments performed in different flow rates, slopes and concentrations to understand the current structure and turbulence specification of the salt solution density currents and particle-laden density currents. Acoustic Doppler Velocimeter is used to measure the velocity fluctuations. The... 

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    Numerical investigation of a stepped planing hull in calm water

    , Article Ocean Engineering ; Volume 94 , January , 2015 , Pages 103-110 ; 00298018 (ISSN) Lotfi, P ; Ashrafizaadeh, M ; Esfahan, R. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Stepped planing hulls enable the feasibility of running at relatively low Drag-Lift ratio by means of achieving more optimal trim angle at high speeds. Currently, there is no precise method to analyze these hulls over the full range of operating speeds. In this study, a three-dimensional computational fluid dynamics (CFD) model using volume of fluid (VOF) approach is presented for examining the characteristics of a planing hull having one transverse step. A procedure is presented to transform a series of fixed-position simulations into a free to heave and pitch simulation. Resistance, lift, running draft, dynamic trim angle, and wetted area are compared with available experimental data and... 

    The effects of hydrodynamics characteristics on mass transfer during droplet formation using computational approach

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 08888116 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Javadi, A ; Taeibi Rahni, M ; Bastani, D ; Javadi, K ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    For the reason that flow expansion model (developed in our previous work) for evaluating mass transfer during droplet formation involves with manifest hydrodynamic aspects, in this research computational simulation of this phenomenon was done for characterization of hydrodynamics effects on the mass transfer during droplet formation. For this purpose, an Eulerian volume tracking computational code based on volume of fluid (VOF) method was developed to solve the transient Navier-Stokes equations for the axisymmetric free-boundary problem of a Newtonian liquid that is dripping vertically and breaking as drops into another immiscible Newtonian fluid. The effects of hydrodynamics effects on the... 

    Numerical simulation of density current using two-phase flow

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2 FORUMS , 2006 , Pages 49-54 ; 0791847500 (ISBN); 9780791847503 (ISBN) Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Due to shear layer at the interface of density current and ambient fluid, density current disturbs and entrains the surrounding fluid. Most existing analytical and numerical models for density current flows are based on the equations for single-phase flows. In this research, the density current has been modeled with two-phase flow model. The governing equations are continuity, x- momentum, and y- momentum equations for every fluid. The volume-of-fluid (VOF) interface tracking technique which uses a piecewise-linear interface calculation (PLIC) in each cell is used to determine the deformation of free surface in density current, numerically. Surface tension is implemented by the continuous... 

    Development of a VoF-fractional step solver for floating body motion simulation

    , Article Applied Ocean Research ; Volume 28, Issue 3 , 2006 , Pages 171-181 ; 01411187 (ISSN) Panahi, R ; Jahanbakhsh, E ; Seif, M. S ; Sharif University of Technology
    2006
    Abstract
    Numerical simulation of floating or submerged body motions is presented based on a Volume of Fluid (VoF)-fractional step coupling. Solving a scalar transport equation for volume fraction of two phases results in a single continuum with a fluid property jump at the interface. In addition, velocity and pressure fields are coupled using the fractional step method. Based on integration of stresses over a body, acting forces and moments are calculated. Using the strategy of non-orthogonal body-attached mesh and calculation of motions in each time step result in time history of hydrodynamic motions. To verify the accuracy of the numerical procedure in simulation of two-phase flow, sloshing and dam... 

    Direct pore-scale modeling of two-phase flow: investigation of the effect of interfacial tension and contact angle

    , Article Special Topics and Reviews in Porous Media ; Volume 12, Issue 3 , 2021 , Pages 71-88 ; 21514798 (ISSN) Azizi, Q ; Hashemabadi, S. H ; Alamooti, A. H. M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    The process of fluid flow displacement in porous media has recently gained great prominence owing to its widespread usage in a variety of industries, especially in the case of pore scale investigations. Although, many studies have been conducted to address pore-scale investigations in both modeling and experimental approaches, the role of interfacial tension and contact angle on pore-scale phenomena is less focused. In this work, direct pore-scale modeling was used to precisely examine the effect of interfacial tension and contact angle on the fluid flow at the microscale. Also, several pore-scale mechanisms, including Haines jump and dynamic breakup mechanisms, were observed. Therefore, the... 

    A new multiphase and dynamic asphaltene deposition tool (MAD-ADEPT) to predict the deposition of asphaltene particles on tubing wall

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Naseri, S ; Jamshidi, S ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As expounded, the precipitation and deposition of asphaltene particles in pipelines has been proved to be the most challenging flow assurance problem due to its unknown and complex behaviors. In this work, a new multicomponent, multiphase and dynamic tool was developed to model the aggregation and deposition of asphaltene particles in a bulk medium. The multiphase and dynamic asphaltene deposition tool, shortened as MAD-ADEPT is, in fact, a modified version of the previously developed ADEPT. The new tool was developed to make the asphaltene deposition and aggregation concepts in oil production wells more predictable. To tackle the complexity of the asphaltene problem, a bespoke algorithm was... 

    Design, Numerical Simulationand and Experimental Study of a Batch-type Stirred Bioreactor

    , M.Sc. Thesis Sharif University of Technology Pavir, Fereydoon (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    The stirred tank is one of the oldest device that widely used in different industrial. a special kind of stirred tank that clled bioreactor refer to any device which supplies required biological, biochemical and biomechanical engineered product. Since the aim of bioreactor is produce of desired biological product, it is essential to accurate monitoring internal and external transfer of nutrient, heat transfer, fluid velocity, Strain stress and medium PH. good design and application of bioreactor depend on product, organism, conditions for produce desired product and scale of produce. also cost of capital and function cost are important in bioreactor design. one of the most important... 

    Investigation of the Depth Effects on Desalination Plants Turbulent Dense Jet Discharge Propagation by Large Eddy Simulation

    , M.Sc. Thesis Sharif University of Technology Abdollahi Ashnani, Ali (Author) ; Firoozabadi, Bahar (Supervisor) ; Kazemzadeh Hanani, Siamak (Supervisor)
    Abstract
    The scarcity of potable water is one of the world's challenges. In the Middle East, this crisis is even worse and as a consequence, the most aggregation of desalination plants has been constructed in this area. However, brine effluent discharged from these plants entails serious environmental issues. Despite the extensive studies about the investigation of dilution and the area which faces the brine discharges as submerge jets, there are a few experimental investigations with a focus on the injecting brine discharge into the shallow environment. Whereas the Persian Gulf's coastal environment is shallow. Moreover, there is a huge construction of desalination held in this area. Accordingly,...