Loading...
Search for: vortex
0.036 seconds

    Energy and Exergy Analysis of a Turbocharged Three-Cylinder Spark Ignition Engine and the Use of a Vortex Tube to Recover the Exhaust

    , M.Sc. Thesis Sharif University of Technology Entezari, Sina (Author) ; Kazemzadeh Hanani, Siamak (Supervisor) ; Chitsaz, Eiman (Supervisor)
    Abstract
    In this research energy and exergy Balance has been studied for a turbocharged three-cylinder engine. Energy balance is a method based on the first law of thermodynamics and based on this method the control volume is selected on the engine and the input and output energies of the control volume are calculated. Exergy balance is also a method based on the second law of thermodynamics which achieves the amount of irreversibility and ability to convert useful work for different energies in the control volume. In the tests performed, the net output power, output exhaust energy, energy transferred to the cooling fluid and other energies, including convection and radiation heat transfer from the... 

    Effect of Aquatic Plants Flexibility on Lateral and Vertical Dispersion

    , Ph.D. Dissertation Sharif University of Technology Sehat, Haleh (Author) ; Jamali, Mirmosadegh (Supervisor)
    Abstract
    Flexible vegetation has a significant impact on the small-scale hydrodynamics of aquatic environments, which governs the dispersion of dissolved and particulate material. Flexible canopies bend and oscillate in both the in-line and cross-flow directions due to periodic forcing associated with vortex shedding. The resultant plant motion affects the vegetation wake structure and, hence, the rate of lateral dispersion in these environments. Despite a recently-developed understanding of dispersion in rigid canopies, a framework that can predict the effect of plant-induced vibrations on mixing in flexible canopy environments is still lacking. Here, we investigate the role of the flexibility of... 

    Design and Fabrication of a Quadrotor with Dihedral Angle Capability and its Dynamic Modeling and Motion Control

    , M.Sc. Thesis Sharif University of Technology Zargarbashi, Fatemeh (Author) ; Alasti, Aria (Supervisor) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    As the leading kind of multi-rotors, quadrotors have become one of the most popular Unmanned Areal Vehicles (UAVs). These robots are very agile, but their speed is limited when performing decent maneuvers. In this project, a special quadrotor with dihedral-rotating arms is presented in order to increase the decent velocity of the vehicle. The conceptual and detailed designs of the vehicle are presented first, followed by the construction of the quadrotor. The fabricated quadrotor measures 25 cm in size, has a weight of about 1 kg, and can support up to 70 degrees of dihedral angle. Afterwards, the dynamic equations of the dihedral quadrotor are driven and simulated. The effects of dihedral... 

    The Investigation of Vortex Generators Effects on the Efficiency of Axial Flow Fans

    , M.Sc. Thesis Sharif University of Technology Shekaridahaj, Morteza (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    The ever-increasing need for energy compels researchers to investigate different manners of energy saving. Aَs we know well, one of the effective ways to save energy is to improve the energy consumption of turbomachinery devices such as axial flow fans. Fans are the most applicable of turbomachinery which supply needed airflow, which can be used in ventilation systems, Cooling systems for cars and machines, smoke extraction, and supply required air for firing. Therefore, improving their efficiency can play a significant role in reducing energy consumption and enhancing energy storage. One of the most critical factors in reducing the efficiency of the fans is the stall phenomenon, which can... 

    Control of a Quadcopter for Rapid Descent

    , Ph.D. Dissertation Sharif University of Technology Talaeizadeh, Amin (Author) ; Alasty, Aria (Supervisor) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    It is well-known that helicopters descending fast may enter a region in the velocity space called Vortex Ring State where the blade’s lift differs significantly from regular regions and includes high amplitude fluctuations. These fluctuations may lead to instability and therefore, this region is avoided, typically by increasing the horizontal speed. However, this region is not fully identified for multirotors, which their blades are rigid in contrary of helicopter’s blades which have two degrees of freedom. This project researches this phenomenon in the context of small-scale quadcopters. The region corresponding to the VRS is identified by combining first-principles modeling and wind-tunnel... 

    Study of Vortex-Induced Vibration of Cylindrical Structure Using Numerical Method

    , M.Sc. Thesis Sharif University of Technology Seyedsharifi, Zahra (Author) ; Raie, Mohammad (Supervisor)
    Abstract
    The purpose of this study is to numerically investigate the Vortex-Induced Vibration (VIV) around the cylinder, which occurs in many engineering structures, including offshore structures, offshore risers, deep-sea pipelines, bridges, cables, and tall buildings. This phenomenon is non-linear and self-limitting and is the major cause of fatigue and failure in engineering structures. At the same time, it is possible to harvest Aquatic Clean Energy from Vortex-Induced Vibration. This research investigates the single degree of freedom and two degrees of freedom oscillator. The numerical model is validated using an experimental model in the Sharif University of Technology's advanced hydraulics... 

    Model Predictive Control for Fast Descending Maneuver of Quadrotor

    , M.Sc. Thesis Sharif University of Technology Nazeri Astanjin, Ahmad (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Zohoor, Hassan (Supervisor) ; Nejat Pishkenari, Hossein (Co-Supervisor)
    Abstract
    Quadrotors have limitation in performing fast descending maneuver due to entering a dangerous region in velocity space called Vortex Ring State(VRS) which cause considerable loss of lift that may lead to fall. The purpose of this project is to reduce time of fast descending maneuver without entering VRS region by using model predictive control. First, appropriate nonlinear dynamic model of quadrotor obtained by considering important aerodynamics effect. Then by considering velocity constraints in order to avoid entering the VRS region, a nonlinear model predictive controller(NMPC) has designed. This controller successfully reduce the time of the maneuver up to than ordinary descending.... 

    Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation

    , Article Journal of Engineering Thermophysics ; Vol. 23, issue. 1 , January , 2014 , p. 27-38 Tabrizi, A. S ; Asadi, M ; Xie, G ; Lorenzini, G ; Biserni, C ; Sharif University of Technology
    Abstract
    In this paper, the ball valve performance is numerically simulated using an unstructured CFD (Computational Fluid Dynamics) code based on the finite volume method. Navier-Stokes equations in addition to a transport equation for the vapor volume fraction were coupled in the RANS solver. Separation is modeled very well with a modification of turbulent viscosity. The results of CFD calculations of flow through a ball valve, based on the concept of experimental data, are described and analyzed. Comparison of the flow pattern at several opening angles is investigated. Pressure drop behind the ball valve and formation of the vortex flow downstream the valve section are also discussed. As the... 

    Blade shape optimization of marine propeller via genetic algorithm for efficiency improvement

    , Article Proceedings of the ASME Turbo Expo ; Volume 5 , 2012 , Pages 235-242 ; 9780791844717 (ISBN) Taheri, R ; Mazaheri, K ; Sharif University of Technology
    2012
    Abstract
    In this paper, a numerical optimization method has been carried out to optimize the shape and efficiency of a propeller. For analysis of the hydrodynamic performance parameters, an extended vortex lattice method was used by implementing an open-source code which is called OpenProp. The method of optimization is a non-gradient based algorithm. After a trade-off between a few gradient-based and non-gradient based algorithms, it is found that the problem of being trapped in local optimum solutions can be easily solved by choosing nongradient based ones. Hence, modified Genetic algorithm is used to implement the so-called hydrodynamic performance analyzer code. The objective function is to... 

    Comparative numerical analysis of the flow pattern and performance of a foil in flapping and undulating oscillations

    , Article Journal of Marine Science and Technology (Japan) ; Volume 20, Issue 2 , June , 2015 , Pages 257-277 ; 09484280 (ISSN) Abbaspour, M ; Ebrahimi, M ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Nature presents a variety of propulsion, maneuvering, and stabilization mechanisms which can be inspired to design and construction of manmade vehicles and the devices involved in them, such as stabilizers or control surfaces. This study aims to elucidate and compare the propulsive vortical signature and performance of a foil in two important natural mechanisms: flapping and undulation. Navier–Stokes equations are solved in an ALE framework domain containing a 2D NACA 0012 foil moving with prescribed kinematics. All simulations are carried out using a pressure-based finite volume method solver. The results of time-averaged inline force versus Strouhal number (St) show that in a given... 

    On application of high-order compact finite-difference schemes to compressible vorticity confinement method

    , Article Aerospace Science and Technology ; Volume 46 , October–November , 2015 , Pages 398-411 ; 12709638 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    The main goal of this study is to assess the application of high-order compact finite-difference schemes for the solution of the Euler equations in conjunction with the compressible vorticity confinement method on both uniform Cartesian and curvilinear grids. Here, the spatial discretization of the governing equations is performed by the fourth-order compact finite-difference scheme and the temporal term is discretized by the fourth-order Runge-Kutta method. To stabilize the numerical solution, appropriate dissipation terms are applied and a detail assessment is performed to study the effects of the values of confinement and dissipation coefficients on the solution to reasonably preserve the... 

    Flow of a PTT fluid through planar contractions - Vortex inhibition using rounded corners

    , Article ASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010, Vancouver, BC, 12 November 2010 through 18 November 2010 ; Volume 7, Issue PARTS A AND B , November , 2010 , Pages 601-607 ; 9780791844441 (ISBN) Khodadadi Yazdi, M ; Ramazani S. A, A ; Hosseini Amoli, H ; Behrang, A ; Kamyabi, A ; Sharif University of Technology
    2010
    Abstract
    Contraction flow is one of important geometries in fluid flow both in Newtonian and non-Newtonian fluids. In this study, flow of a viscoelastic fluid through a planar 4:1 contraction with rounded corners was investigated. Six different rounding ratios (RR =0, 0.125, 0.25, 0.375, 0.438, 0.475, 0.488) was examined using the linear PTT constitutive equation at creeping flow and isothermal condition. Then the resulting PDE set including continuity, momentum, and PTT constitutive equations were implemented to the OpenFOAM software. The results clearly show vortex deterioration with increasing rounding diameter, so that when rounding corner exceeds a critical value, the vortex disappears... 

    Effects of depth variation of vegetation density on vertical mixing

    , Article Environmental Hydraulics - Proceedings of the 6th International Symposium on Environmental Hydraulics, 23 June 2010 through 25 June 2010 ; Volume 1 , June , 2010 , Pages 247-252 ; 9780415595452 (ISBN) Ghazvinizadeh, S ; Jamali, M ; Sharif University of Technology
    2010
    Abstract
    This paper discusses an experimental study of vertical mixing in an aquatic canopy. Vertical variation of physical characteristics of stems is fairly observed in the field and leads to variation in frontal area. This can affect both the flow and the mixing process.We experimentally investigated the effects of vertical density variation on both flow and vertical diffusion at high Reynolds numbers (turbulent flow range). Using rigid cylinders, we simulated step-like density variation in a flume. Vertical mixing coefficient was measured by recording vertical mixing of dye in the flume. The results indicate that vertical mixing coefficient decreases as density increases in depth. Velocity... 

    Hall anomaly in CNT-doped Y-123 high temperature superconductor

    , Article Physica C: Superconductivity and its Applications ; Volume 470, Issue 5-6 , 2010 , Pages 309-312 ; 09214534 (ISSN) Dadras, S ; Manivannan, N ; Kim, K. H ; Daadmehr, V ; Akhavan, M ; Sharif University of Technology
    2010
    Abstract
    In order to study the Hall effect in pure and CNT-doped Y-123 polycrystalline samples, we have measured the longitudinal and transverse voltages at different magnetic field (0 - 9 T) in the normal and vortex states. In the normal state, the Hall coefficient is positive and decreases with increasing temperature, and can be approximately fitted to RH = a + bT-1. We have found a sign reversal in the pure sample for the magnetic field of about 3 T, and double sign reversal of the Hall coefficient in the 0.7 wt% CNT-doped sample at about 3 and 5 T. The Hall resistivity in our samples depends on the pinning  

    Spiral microchannel with stair-like cross section for size-based particle separation

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 7 , 2017 ; 16134982 (ISSN) Ghadami, S ; Kowsari Esfahan, R ; Saidi, M. S ; Firoozbakhsh, K ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Particle separation has a variety of applications in biology, chemistry and industry. Among them, circulating tumor cells (CTCs) separation has drawn significant attention to itself due to its high impact on both cancer diagnosis and therapeutics. In recent years, there has been growing interest in using inertial microfluidics to separate micro/nano particles based on their sizes. This technique offers label-free, high-throughput and efficient separation and can be easily fabricated. However, further improvements are needed for potential clinical applications. In this study, a novel inertial separation technique using spiral microchannel having stair-like cross section is introduced. The... 

    Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows

    , Article Carbon ; Volume 138 , 2018 , Pages 8-17 ; 00086223 (ISSN) Jannesari, M ; Akhavan, O ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Spontaneous generation of nanobubbles (NBs) was developed by using a controllable platform of superfast microvortices, based on turbulent jet flows in the presence of graphene oxide (GO) sheets. Very high energy dissipation rates through discharging warm water into cold N2 aqueous solutions resulted in creation of micro/submicro-vortices. Shear stresses in these domains generated gas local supersaturations, leading to the formation of high concentration (∼109 mL−1) of stable NBs. Introducing GO sheets into the microvortex system resulted in effective manipulation of NBs by providing energetically favorable sites for prompt heterogeneous nucleation as well as stronger shear rate fluctuations.... 

    Understanding the occurrence of the surface turbulence in a nonpressurized bottom gating system: numerical simulation of the melt flow pattern

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 232, Issue 3 , March , 2018 , Pages 230-241 ; 14644207 (ISSN) Kheirabi, A ; Baghani, A ; Bahmani, A ; Tamizifar, M ; Davami, P ; Ostad Shabani, M ; Mazahery, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Surface turbulence during the filling of the mold triggers the entrainment of oxide films, which appears to be detrimental to the soundness of the final casting. Nonpressurized and bottom-gating systems have been employed in order to avoid such casting defects by reducing the surface velocity of the liquid metal. However, recent studies have shown that the melt front velocity in the mold entrance may exceed the critical value in the nonpressurized and bottom-gating systems. Therefore, a study was conducted on numerical simulation melt flow pattern in nonpressurized and bottom-gating systems. It was noted that the liquid metal enters the gate and then mold cavity with a higher velocity by... 

    Effect of active feather length on aerodynamic performance of airfoils at low reynolds number flow

    , Article AIAA AVIATION 2020 FORUM, 15 June 2020 through 19 June 2020 ; Volume 1 PartF , 2020 Esmaeili, A ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2020
    Abstract
    To increase the flight endurance of a Micro air vehicle (MAVs), which operates at low Reynolds number flow, one way is to harvest energy during its flight. By inspiring from the nature when all the birds use their feathers to control and distribute their power along the flying time, a solution might be design of a piezoelectric plate as feathers, which scavenges energy directly from the fluid flow. Cantilevered beam with piezo-ceramic layer undergoing vortex-induced vibrations can convert the mechanical energy available from the ambient environment to a usable electrical power. Since a flow-driven piezoelectric composite beam takes a form of natural three-way coupling of the turbulent fluid... 

    Thermal-exergetic behavior of triangular vortex generators through the cylindrical tubes

    , Article International Journal of Heat and Mass Transfer ; Volume 151 , 2020 Pourhedayat, S ; Pesteei, S. M ; Ebrahimi Ghalinghie, H ; Hashemian, M ; Aqeel Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, new arrangements of triangular winglet as a turbulator are numerically studied through a cylindrical tube. Triangular winglets are commonly placed on one side of a rectangular plate and inserted inside the tube. However, in present work, the winglets are located on both sides of the rectangular plate to further enhance the thermal performance of the fluid flow through the tube. Both backward and forward configurations of the winglets are analysed. Moreover, despite the importance of “latitudinal pitch of the winglets” and “winglet-plate angle” no investigation has been evaluated these parameters which will be evaluated in this work. Moreover, as no exergetic evaluation has... 

    URANS simulation of 2D continuous and discontinuous gravity currents

    , Article Journal of Applied Sciences ; Volume 8, Issue 16 , 2008 , Pages 2801-2813 ; 18125654 (ISSN) Eghbalzadeh, A ; Namin, M. M ; Salehi, A. A ; Firoozabadi, B ; Javan, M ; Sharif University of Technology
    2008
    Abstract
    This study seeks to explore the ability of unsteady Reynolds-averaged Navier-Stokes (URANS) simulation approach for resolving two-dimensional (2D) gravity currents on fine computational meshes. A 2D URANS equations closed by a buoyancy-modified k-ε turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high resolution semi-Lagrangian technique for the convective terms. A series of 2D simulations are carried out for gravity currents from both discontinuous and continuous sources. Comparisons with experimental...