Loading...
Search for: ebrahimi--zahra
0.121 seconds

    Imaging Through a Scattering Medium Using Microwave Frequency

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Vishki, Mohammad Reza (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Radio waves can penetrate through walls and various scattering environments, allowing us to communicate with mobile phones within buildings or use wireless waves to transfer data from one room to another despite physical obstacles. Radio signals, especially at lower frequencies, are highly effective in traversing such environments. However, the ability to penetrate walls does not imply the ability to "see through" them. In this thesis, we focus on examining the development and improvement of imaging techniques in the presence of walls. The aim is to present the concept of imaging through walls in a comprehensible manner for researchers and enthusiasts, facilitating the development and... 

    Utilization of Different Optical Wavelengths in Diffractive Deep Neural Networks for Object Classification in Multi-Channel Images

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Sevda (Author) ; Vosughi Vahdat, Bijan (Supervisor) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Diffractive deep neural network is an optical machine-learning framework that uses diffractive surfaces, optical devices, electro-optic devices and engineered matterials to optically perform computational tasks. These diffractive networks, after their desing and train phase by computers and machine learning algorithms, are physically fabricated using 3D printing or lithography, to actualize the model of trained network. Machine learning processes and alghorithms are performed through light-matter interaction and diffraction of light. This procedure is done at the speed of light and without the need of any power, except for the light illumination for the input object. In comparison with... 

    Investigation of The Effect Of Microgravity On Bone Marrow Stromal Cell Growth And Infiltration On An Optimized 3d Structured Scaffold

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Armin (Author) ; Yaghmaei, Soheila (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Haji Ebrahimi, Zahra (Supervisor) ; Janmaleki, Mohsen (Co-Supervisor)
    Abstract
    To develop a novel cell culture method for enhancement of bone marrow stromal cell growth and infiltration into the 3d electrospun PCL-based scaffold, we utilized the RPM system to simulate microgravity. In current study, six different scaffolds are produced using the electrospinningelectrospraying technique. These scaffolds are compared based on their structural (average diameter and SEM micrographs), mechanical (Tensile strength, elongation and wettability) and biological (Biodegradability, bioactivity, biocompatibility, cell adhesion, cell infiltration and antibacterial quality) characteristics. It is noted that the porous nano-hydroxyapatite/titanium hydroxide/polycaprolactone... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches

    , Article International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2011 and Electromotion 2011 Joint Conference, Istanbul ; 2013 , Pages 125-128 ; 9781467350037 (ISBN) Ebrahimi, S ; Najmi, V ; Ebrahimi, S ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    Switched Reluctance Motors (SRMs) are widely used in high-speed and low voltage applications because of their attractive features such as robustness and simplicity. No winding on the rotor of this type of motors allows reaching high speed which is desired for many applications. Drive circuits of SRMs also play an important role in their performance and operation. In this paper, a new bifilar drive circuit for this type of motors has been proposed. This novel configuration has been tested and investigated by PSIM software. Results show that the new bifilar drive circuit highly reduces the voltage stresses on semiconductor switches, and also considerably reduces the switching losses which are... 

    A Survey on Searchable Symmetric Encryption Schemes

    , M.Sc. Thesis Sharif University of Technology Sajadieh, Zahra Sadat (Author) ; Khazaei, Shahram (Supervisor)
    Abstract
    Using “Searchable Encryption” enables us to encrypt the data, while preserving the possibility of running search queries. One of the most important applications of the mentioned is in Cloud Storage. As users do not trust the Cloud space, they are not inclined to store their data on the Could. The solution to this problem is of course, Cryptography. However, ordinary Cryptography methods, eliminate the data’s searchability. Hence, we need encryption schemes that code the data while retaining their searchability. So far, various schemes has been proposed that differ in their performance, security level, and usage. In this thesis, we aim to discuss and analyze these methods  

    Temporal Depth Imaging Based on Dispersion

    , M.Sc. Thesis Sharif University of Technology Behzadfar, Shiva (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In this thesis, the aim is designing an optical temporal imaging system. In recent years, due to many applications, including the receipt of high-rate data by slow receivers and compensation of dispersion in telecommunication systems, researchers have considered the topic of temporal imaging. This field of research is based on dispersion, electro-optical modulators or time lenses and space-time theory. By modeling dispersion properties as a depth dimension and taking ideas from three-dimensional spatial imaging systems we intended to increase the temporal resolution and depth of focus of the structure. We also present a novel technique for multiplexing and demultiplexing telecommunication... 

    Time Domain Optical Signal Processing Based on the Duality Between Dispersion and Diffraction

    , M.Sc. Thesis Sharif University of Technology Eksiri, Fatemeh (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In the last decades, due to the growing demand of transferring information with high transmission rates, the complexity and development of telecommunication and optical systems is remarkable. Researchers around the world attempt to explore extraordinary potential of light to process information. In the mid-19th century, scientists discovered a mathematical symmetry between the spatial and temporal optics fields, which originated from the similarity of equations governing the paraxial diffraction of beams and the dispersion of narrow-band pulses known as space– time duality in scientific texts. This new approach provides more advanced and potent methods to temporal processing and... 

    Improving the Stability of an Urban Traffic Network with Limited Data by Using Percolation Theory and Dynamic Clustering

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh, Ehsan (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the most vital aspects of understanding the traffic phenomenon is scrutinizing the traffic transition status, such as the transition from free flow to congestion. The Percolation Theory is a renowned theory focusing on analyzing various network types to detect the critical zones, which are the zones including links that are important to control to improve stability. By calculating the quality indices of network links, the Percolation Theory can simulate the traffic percolation propagation in the network and determine possible critical zones for further analysis. Most studies in this field assume access to data of several traffic parameters for the entire transportation network, such... 

    Modification of Biomedical Imaging Methods in Short Wavelength Infrared Window

    , Ph.D. Dissertation Sharif University of Technology Hassan Abbasi (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In recent years, optical biomedical imaging techniques show great potential in noninvasive imaging. Although these methods have many advantages over other biomedical imaging methods (such as Computerized Tomography (CT), Magnetic Resonance Imaging (MRI) and etc.), these techniques confront with some problems such as optical scattering, light absorption and etc. For in vivo imaging, the short-wavelength infrared region (SWIR; 1,000–2,000 nm) provides several advantages over the visible and near-infrared regions: general lack of auto-fluorescence, low light absorption by blood and tissue, and reduced scattering. In this thesis we want to analyze the traditional IR imaging techniques and... 

    Upgrading the Ultrasound Imaging System Based on The Implementation of the Strain Imaging Mode

    , M.Sc. Thesis Sharif University of Technology Fathi, Haniyeh (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Strain imaging is a non-invasive ultrasound modality for assessing cardiac function in echocardiography systems. In this thesis, we implemented a fully automated strain imaging system containing 5 steps: 1) echocardiographic view recognition, 2) cardiac cycle phase detection, i.e., the events of end-diastole (ED) and end-systole (ES), 3) segmentation of left ventricular (LV) myocardium, 4) motion estimation of this wall and 5) strain calculation. In this work, we propose a novel deep learning-based framework for phase detection of cardiac cycle by the use of echocardiographic images in multibeat videos. Further, by applying the augmentation technique, the model has been able to detect events... 

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate... 

    Energy management of smart home considering residences' satisfaction and PHEV

    , Article 2018 International Conference on Smart Energy Systems and Technologies, SEST 2018, 10 September 2018 through 12 September 2018 ; 2018 ; 9781538653265 (ISBN) Ebrahimi, M ; Shokri Gazafroudi, A ; Corchado, J. M ; Ebrahimi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Regarding the increasing number of electrical devices in the smart homes that leads to increase in total electricity consumption and cost, it is essential to use energy management methods to reduce the electricity cost. However, this can cause resident's dissatisfaction. Hence, it is important to define a method in which cost and dissatisfaction be optimized simultaneously. Among different services, an electric vehicle is the one that can be used as an energy storage system, so it can reduce the daily cost despite of increasing the total energy consumption. In this paper, we study the effect of the EV on the cost and dissatisfaction in our proposed method. © 2018 IEEE  

    Measured impact of different back-off points and cooling methods on pulse-to-pulse stability and sidelobe level of a high-power solid-state amplifier

    , Article IET Radar, Sonar and Navigation ; Volume 14, Issue 2 , 2020 , Pages 335-340 Ebrahimi, A ; Khodarahmi, E ; Ebrahimi, E ; Ahmadi, B ; Jalali, M ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    Using solid-state power amplifiers for next generation of weather radars becomes feasible by pulse compression techniques. In this study a 1.5 kW solid-state power amplifier (transmitter) for C-band weather radars is designed and fabricated by GaN high electron mobility transistor (HEMT) technology. An experimental setup based on heterodyne receiver with 16-bit digitiser is developed to investigate the behavior of the power amplifier under different cooling methods and back-off points. Several measurements with shaped LFM pulse show an approximately identical pulse to pulse (P2P) stability for 3 dB compression, P1dB and 2 dB back-off points while the best sidelobe level (SLL) is achieved for...